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FOREWORD 

During the summer of 1987, I commissioned a group of technical advisors to define a Defense Ad- 
vanced Research Projects Agency (DARPA) initiative in neural networks. The group consisted of Steven 
Andriole, George Mason University; Harris Eisenhardt, DARPA consultant; Lee Giles, Air Force Office 
of Scientific Research; Alfred Gschwendtner, MIT/Lincoln Laboratory; and Peter Kemmey, DARPA. 

It was recommended by the group, initially, that DARPA issue a call for position papers on potential 
research and application topics. After this solicitation as a Broad Area Announcement (a DARPA vehicle 
for expressions of interest), and prior to an overwhelming response of almost 300 papers, it was further 
suggested to me by Al Gschwendtner that DARPA sponsor a national study on neural networks. 

The motivations for a national study were manifold. During the summer of 1987, a meeting in San 
Diego on neural networks attracted almost 2,000 participants and attendees. In fact, numerous meetings 
were springing up and attracting many enthusiasts. During this same period, the whole field of artificial 
intelligence was undergoing a serious re-examination, and by some it was perceived that neural networks 
might be just a re-packaging of old ideas and promises; others perceived that neural networks represented 
the dawn of a new era in computers. In addition, the various Services of the Department of Defense (DoD) 
were initiating a variety of neural network projects and, of course, Europe and Japan began touting their 
own national programs. The United States had no national perspective and it was, therefore, recommended 
that DARPA undertake a leadership role in evaluating the status and promise of neural networks and 
possibly establishing a national research program. 

Toward that end, MIT/Lincoln Laboratory was directed by DARPA to establish a Terms of Reference 
to guide the Study and to assist DARPA in the overall management and execution of the effort (this and 
other details of the Study are discussed in the Introduction to the Neural Network Study Technical Report 
that follows). The Study was initiated with a two-day symposium at Lincoln Laboratory, where national 
experts in various aspects of neural network research were invited to present their views. 

This symposium emphasized what we had found out in preparing for the Study - - that there are many 
different and even conflicting views of what neural networks are, what they can do, and how they should 
be implemented. During the course of the Study, we examined these diverse views and attempted to shed 
light on the issues. 

After participating in this Study, my personal view is that neural networks will provide the next major ad- 
vance in computing technology. Over the history of computing science, two advances have matured: high- 
speed numerical processing and knowledge processing (artificial intelligence). Neural networks seem to 
offer the next necessary ingredient for intelligent machines - namely, knowledge formation and organiza- 
tion. 

I would like to thank all of those who participated in the Study's Panels, the Study Panel chairmen, and 
members of the steering committee for their dedicated efforts in conducting the Study and their hard work 
in producing this report. 

The many pages that follow comprise a thorough review and assessment of the state of neural network 
research and development, chiefly in the United States, in late 1987 and early 1988; they take into account 
not only the enthusiastic visions of those committed to the promise of neural networks, but the critical 
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questioning of those who are willing to acknowledge the limited scope of past and current neural network 
research efforts. This Technical Report of the DARPA Neural Network Study is, therefore, a valuable 
sourcebook for anyone interested in neural networks and it is proffered in the spirit of scientific inquiry. 

Dr. Jasper Lupo 
Defense Advanced Research Projects Agency 
Washington, DC 
June, 1988 
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STUDY DIRECTOR'S OVERVIEW 

The beginnings of a science of neural networks can be traced back to ancient times, but the modern 
forms of this subject began with the work of McCulloch and Pitts in 1943. They were the first to show 
that Boolean operations could be performed using "neural" elements modeled after living neurons. A 
great deal of work has followed and continues, with acceleration, to this day. Hundreds of workers in 
the U.S., an equivalent number in Europe, an many hundreds more in Japan and the rest of the world are 
currently active in the field. 

Various agencies of government in the U.S., including DARPA, have begun to fund neural network 
research at low levels. Industrial companies have begun working on the subject using internal funds. 

Workers in many companies have formed spontaneous neural net groups to meet during lunch times 
and at off hours to discuss and do research on neural networks, not as a part of company business. At 
many universities, students have formed seminar groups on neural networks to hear invited speakers and 
to discuss their own research ideas, hoping that they will have the opportunity and the financial support 
to pursue Ph.D. research in neural nets. 

Under the leadership of Stephen Grossberg in the U.S., Teuvo Kohonen in Finland, and Shun-Ichi 
Amari in Japan, the International Neural Network Society was formed in the Spring of 1987. Their journal 
Neural Networks has just appeared, Vol. 1, No. 1, 1988. The "IEEE First International Conference on 
Neural Networks" was held during June 21-24, 1987. Hundreds of papers were presented in oral and 
poster sessions. Approximately 2,000 peopled attended. An IEEE "Conference on Neural Information 
Processing Systems - Natural and Synthetic" was held November 8-12, 1987 in Denver, with about 750 
attendees. It was an excellent scientific meeting. The IEEE Second International Conference on neural 
networks will be held during July 1988 in San Diego, and the first Conference of the International Neural 
Network Society (INNS) will be held in Boston on September 6-10, 1988. Six of the IEEE Societies are 
co-sponsors of the INNS meeting. Financial support has come from the National Science Foundation, 
DARPA, and many other governmental agencies. It is anticipated that it will be well attended and will be 
a fine technical success. 

The field of neural networks exists. Its emergence has met with mixed reactions, however. Publicity, 
venture capital, and hyperbole has accompanied the solid achievements of the field. Among scientists, 
the presence of hype and extravagant claims casts a dark shadow and makes the work controversial in 
scientific circles and amongst the world at large. 

Why does this field attract hype? I think that answer is this. Neural network scientists are talking about 
modeling the human brain and its parts, about gaining an understanding of how the brain works. Others 
in the field are talking about building new and unusual forms of computers having brain-like capability 
and being constructed of brain-like parts. The ongoing work is good and serious, being done by scientists 
who are facing problems of profound intellectual interest, and problems of enormous technical difficulty. 
Some results have been achieved and the field is beginning to show "signs of life." However, work of this 
type often seems to be sensational and hype unfortunately results. How to evaluate and appraise the work 
is not easy. 

For many years, DARPA has been a great leader in developing the most advanced computer and com- 
munications technologies in the U.S. From an historical perspective, it is natural for DARPA to have a 



strong interest in neural networks. Involvement is difficult, however, in the presence of hype. The field has 
to prove its worthiness, and this requires demonstration that neural networks can solve certain important 
difficult problems in a unique and superior way. 

To ascertain and appraise the state of neural network research and applications, this Study was under- 
taken by DARPA. The Study began on October 8, 1987 and ended on February 26, 1988. Because of the 
tight time schedule, the Study was primarily addressed to work in the U.S. Hundreds of neural network 
researchers and practitioners were interviewed by the various panelists, who were flown all over the US to 
accomplish this task. Logistics, organization, and support were supplied by MIT/Lincoln Laboratory staff 
and scientists under the able supervision of Al Gschwendtner. Representatives of every school of thought 
in neural networks were consulted. If we succeeded, this Report will be a fair and balanced representation 
of neural networks - 1988, in the U.S.A. 

Prof. Bernard Widrow, Study Director 
Palo Alto, CA 
February, 1988 
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1. NEURAL NETWORK STUDY AND THE TECHNICAL REPORT 

The Neural Network Study, sponsored by the Tactical Technology Office of the U.S. Defense Advanced 
Research Projects Agency (DARPA/TTO), was conducted under the auspices of the Massachusetts Insti- 
tute of Technology's Lincoln Laboratory (MIT/LL) from October, 1987 through February, 1988. Its formal 
objectives were several: 

• To identify potential applications for neural networks in Department of Defense 
(DoD) systems, 

• To determine the current neural network technology base, 

• To identify technology requirements, and 

• To identify a DoD program plan for the next five years. 

1.1    STRUCTURE OF THE STUDY 

The Study's Terms of Reference were formalized before its initiation in October 1987 (see Figure 1-1). 
The Terms mandated the organization and management of an in-depth Study comprised of government, 
industry, and academic participants, with particular attention to theory, technology, and applications. 

The Study began on October 8, 1987 at Lincoln Laboratory with a two-day technical symposium. After 
the nature and purpose of the Study was explained, symposium participants - who together constituted a 
significant number of the fledgling neural network community's leading proponents and many of whom 
served on the Study's various panels or its steering committee - were introduced to the Study's director 
and offered a thorough technical review of the neural network field. This review was the Study's starting 
point. (The symposium agenda can be found in Figure 1-2.) 

In order to achieve the objectives of the DARPA Neural Network Study, and in accord with the Terms 
of Reference, five working panels mandated to conduct the activities of the Study were formed, each 
with a chairman and an MIT/Lincoln Laboratory scientist serving as associate. In addition, a sixth panel 
was created to produce a program plan; its membership included the chairmen and associates of the five 
working panels as well as several consultants. The panels included: 

• Panel 1: Intelligent Systems - Status and Expectations (later informally renamed 
Technology Assessment), which was chaired by Dr. Edward Posner, California 
Institute of Technology; Dr. Thomas Goblick served as the MIT/Lincoln Laboratory 
associate. 

• Panel 2: Adaptive Knowledge Processing, which was headed by Dr. John Pearson 
of SRI; the MIT/LL associate was Dr. Richard Lippmann. 

• Panel 3: Simulation/Emulation - Tools and Techniques, which was led by Dr. 
Andrew Penz, Texas Instruments, with Dr. Paul Kolodzy acting as the MIT/LL 
associate. 



(1) ORGANIZE AND MANAGE AN  IN-DEPTH  STUDY OF 
NEURAL NETWORKS AND THEIR APPLICATION TO 
DoD SYSTEMS.  PARTICIPATION WILL INCLUDE 
REPRESENTATIVES FROM GOVERNMENT.  INDUSTRY 
AND UNIVERSITIES 

(2) THE STUDY WILL CONSIST OF A STEERING GROUP. A 
STUDY DIRECTOR AND FIVE TECHNICAL PANELS. A 
SIXTH  PANEL WILL BE  FORMED  EARLY IN THE STUDY 
TO  DEVELOP A PROGRAM  PLAN  FOR  DARPA 

(3) THE  FIVE TECHNICAL PANELS WILL BE DESIGNATED 
AS  FOLLOWS: 

1. INTELLIGENT SYSTEMS — STATUS AND EXPECTATIONS 

2. ADAPTIVE KNOWLEDGE PROCESSING — THEORY 

3. SIMULATION/EMULATION—TOOLS AND TECHNIQUES 

4. SYSTEMS APPLICATIONS 

5. ADVANCED IMPLEMENTATION TECHNOLOGY 

(4) A FINAL STUDY REPORT WILL BE  PREPARED WHICH 
WILL INCLUDE AN  EXECUTIVE SUMMARY WITH 
BRIEFING CHARTS. SUMMARY REPORTS OF THE 
TECHNICAL PANELS AND A PROGRAM  PLAN 

CM 

Figure 1-1.    DARPA Neural Network Study Terms of Reference. 



MASSACHUSETTS   INSTITUTE   OF   TECHNOLOGY 

LINCOLN   LABORATORY 

LEXINGTON, MASSACHUSETTS  02173-0073 

AGENDA 

DARPA NEURAL NETWORK STUDY SYMPOSIUM 

Room A-166 

Thursday - 8 October 1987 

0900 - 0905    Welcome 

0905 - 0915    Study Introduction 

0915 - 1015 

1015 - 1045 

1045 - 1130 

1130 - 1215 

1215 - 1300 

1300 - 1345 

1345 - 1430 

1430 - 1515 

1515 - 1530 

1530 - 1615 

Theory & Applications of Layered Neural 
Networks - Past & Future 

Break 

Neural Mechanisms for Processing Visual 
Information 

The Interface between Neuroscience and 
Computer Science 

Lunch 

Neural Network Architectures for Vision 

Neural Networks and Combinatorial 
Optimization 

Neural Networks for Optimization Problems 

Break 

Optical Implementation of Neural Networks 

1615 - 1700    Electronic Circuits for Neuromorphic Systems 

W. Morrow 
MIT/Lincoln Laboratory 

J. Lupo 
DARPA/TTO 

B. Widrow 
Stanford University 

D.   Hubel 
Harvard Medical  School 

E. Schwartz 
NYU Brain Research 

S. Grossberg 
Boston University 

J. Barhen 
Oak Ridge National Lab 

D. Tank 
Bel 1   Laboratories 

B. Soffer 
Hughes Research Lab 

J. Raffel 
MIT/Lincoln Laboratory 

END OF FIRST DAY 

0900 - 0945 

0945 - 1030 

1030 - 1045 

1045 - 1130 

Friday - 9 October 1987 

Neurally Inspired Networks 

Analyzing the Hidden Units in Multilayered 
Neural Networks 

Break 

Invariants of Neural Networks for Adaptive 
Pattern Recognition and Robotics 

D. Rumelhart 
Stanford University 

T. Sejnowski 
Johns Hopkins 

C. Carpenter 
Northeastern University 

1130 - 1215 

1215 - 1300 

1300 - 1345 

Neural Networks in Real World Applications: 
Biological and Computational Constraints 

Massive Parallelism in Nature and Computer 
Sc i ence 

1345 - 1530    Study Organization and Objectives 

L. Cooper 
Brown University 

J. Feldman 
Univ. of Rochester 

A. Gschwendtner 
MIT/Lincoln Laboratory 

END OF SYMPOSIUM 

Figure 1-2.    DARPA Neural Network Study Symposium Agenda. 



• Panel 4: System Applications, which was chaired by Dr. Jon Leonard of Hughes 
Aircraft Co.; the MIT/LL associate was Dr. Michael Holz. 

• Panel 5: Advanced Implementation Technology, which was chaired by Dr. Demetri 
Psaltis, California Institute of Technology; Dr. Jay Sage served as the MIT/Lincoln 
Laboratory associate. 

The full membership of each of the panels is shown in Figure 1-3. 

Dr. Jasper Lupo, of DARPA's Tactical Technology Office, was the Study sponsor. Walter Morrow Jr., 
Director of Lincoln Laboratory, chaired the Study's Steering Committee, whose membership included: Dr. 
Robert Fossum, Dr. George Heilmeier, and Dr. Steven Lukasik, ex-directors of DARPA who provided 
significant insights into the historical role played by DARPA in the development of computer science over 
the past two decades as well as guidance for the potential use of neural networks as a part of future com- 
puter systems; Nobel laureate Professor David Hubel, who has made major contributions to knowledge 
about vision and represented the important area of biological science within the neural network commu- 
nity; and representatives of industry, universities, the armed services, and the Department of Defense (see 
Figure 1-4). This committee periodically reviewed the work of the Study's panels and offered comment 
and direction. 

Professor Bernard Widrow of Stanford University served as the Study Director. He was supported by 
several well-known technical consultants, including: Nobel laureate Professor Leon Cooper of Brown 
University, who shared the prize for the theory of superconductivity and has since become a leading pro- 
ponent of neural network research and development; Professor Stephen Grossberg of Boston University, 
who has contributed greatly to the mathematical foundations of neural networks over the past two decades; 
and Professor Gail Carpenter of Northeastern University (See Figure 1-5). 

The Study's participants maintained a rigorous schedule, meeting almost daily for a period of five 
months at its own facility in Bedford, MA and at a variety of other sites around the U.S. Members of 
the Study's panels listened to some 250 formal presentations and conducted several workshops. Among 
others, they heard from Professor Marvin Minsky of MIT in an AI workshop and from Nobel laureates 
Professor Gerald Edelman and, before his death, Professor Richard Feynman. Professor Edelman has 
developed a novel approach to neural networks based on the principle of neuronal group selection from 
his Nobel Prize winning work in genetics. Professor Feynman, with his inexhaustible interest in and en- 
thusiasm for novel scientific approaches, raised three important questions that were repeated throughout 
the Study: 

1. What good are neural networks? 

2. How do you know that? 

3. What other techniques are there to achieve the same objectives and how well do 
they work? 

Former DARPA director Dr. Robert Cooper reviewed the history of the Strategic Computing effort and 
offered some sound advice concerning how the Neural Network Study should proceed. (See Figure 1-6.) 
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PANEL 1 
INTELLIGENT SYSTEMS - 
STATUS & EXPECTATIONS 

Edward Posner. JPL — Chairman 

Thomas Goblick. MIT/LL — Associate 

John Oaugman,  Harvard University 

Bart Kosko, Verac 

A.F.  Lawrence. Hughes Aircraft 

Tomaso Poggio.  MIT 

Oliver Selfridge, GTE Laboratories 

David Waltz, Thinking Machines. Inc. 

Allen Waxman, Boston University 

PANEL 2 
ADAPTIVE KNOWLEDGE PROCESSING 

John Pearson. SRI — Chairman 

Richard Lippmann, MIT/LL — Associate 

Richard Andersen, MIT 

Yaser Abu-Mostafa. CALTECH 

Andrew Barto, U.  Mass ./ Amherst 

Jerome Feldman, Rochester University 

Edward Finn, Georgetown University 

Michael Kuperstein, Wellesley College 

Ennio Mingolla, Boston University 

John Moody, Yale Computer Science 

Eric Schwartz, NYU Brain Research 

Richard Sutton. GTE Laboratory 

Ronald Williams, Northeastern 

PANEL 3 

SIMULATION/EMULATION 
TOOLS & TECHNIQUES 

Andrew Penz, Tl — Chairman 

Paul Kolodzy,  MIT/LL — Associate 

Michael Cohen, Boston University 

Charles Elbaum, Brown University 

Knut Kongelbeck, Hughes Aircraft 

Martin Fong, SRI 

Robert Hecht Nielsen.  HNC 

Mike Myers. TRW 

Douglas Palmer, HNC 

Mark Watson, SAIC 

m 
IN 
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PANEL 4 
SYSTEMS APPLICATION 

Jon Leonard,  Hughes — Chairman 

Michael Holz,  MIT/LL — Associate 

Patrick Castelaz. Hughes Aircraft 

Mark Coy, US ARMY/ETDL 
William Dress, Oak Ridge National Lab 

Charles Elbaum, NESTOR 
Lynn Garn. Ctr. for Night Vision & EO 

Edward Gliatti, Wright Patterson AFB 

Ted Hoff, Consultant 

William Miceli, ONR 

Doyce Satterfield. USASDC 

Charles Wagner, Wright Patterson AFB 

Charles Woods, RADC 

Figure 1-3.    DARPA Neural Network Study Participants. 



PANEL 5 
ADVANCED IMPLEMENTATION TECHNOLOGY 

Demetri Psaltis, CALTEC H — Chairman 

Jay Saga. MIT/Lincoln Laboratory — Associate 

Joshua Alspector, Bell Communications 

Dana Anderson,  University of Colorado 

Dean Collins, Texas Instruments 

Arthur Fisher,  Naval Research Lab 

Hans Graf, AT&T Bell Laboratories 

Ted Hoff, Consultant 

B. Keith Jenkins, USC 

Greg Nash, Hughes Research Lab 

Anil Thakoor, Jet Propulsion Lab 

Bernard Soffer,  Hughes Research Lab 

PANEL 6 
PROGRAM  PLAN 

Bernard Widrow, Stanford University 

Al Gschwendtner, MIT/Lincoln Laboratory 

Yaser Abu-Mostafa, CALTECH 

Gail Carpenter,  Northeastern University 

Leon Cooper, Brown University 

Thomas Goblick,  MIT/Lincoln Lab 

Steven Grossberg, Boston University 

Ted Hoff, Consultant 

Michael Holz, MIT/Lincoln Lab 

John Hopfield, CALTECH 

Paul Kolodzy, MIT/Lincoln Lab 

Jon Leonard,  Hughes Aircraft 

Richard Lippmann,  MIT/Lincoln Lab 
William Miceli, ONR 

John Pearson, SRI, David Sarnoff Ctr. 

Andrew Penz, Texas Instruments 

Ed Posner, Jet Propulsion Lab 

Demetri Psaltis, CALTECH 

David Rumelhart, Stanford University 

Jay Sage, MIT/Lincoln Lab 

Figure 1-3.    Continued. 
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Figure 1-5.    Neural Network Study Organization. 



A complete list of all presentations made to all the panels can be found in Appendix A: DARPA Neural 
Network Study List of Presentations. 

1.2   STRUCTURE OF THE DARPA NEURAL NETWORK STUDY TECHNICAL REPORT 

The DARPA Neural Network Study Technical Report was prepared under the direction of Dr. Lupo of 
DARPA; Dr. Widrow, Study Director; and Mr. Gschwendtner, Associate Study Director. Its Technical 
Editor was Ms. Carol Weiszmann. 

Parts II-VI of this document were prepared by the individual Study panel members under the supervision 
of their chairmen; the MIT/Lincoln Laboratory associates also served as editors. 

• Part II: Adaptive Knowledge Processing, edited by Dr. Richard Lippmann, presents 
Panel 2's review of the theoretical underpinnings of the neural network field, cover- 
ing neurobiology, mathematical theory, new parallel computer architectures, learn- 
ing theory, and neural network algorithms. 

• Part III: Assessment of Neural Network Technology, edited by Dr. Thomas Gob- 
lick, reports on Panel 1 's efforts to (a) put neural networks in the context of informa- 
tion processing technology and (b) compare neural networks with other approaches 
to information processing, including signal processing, communication and infor- 
mation theory, adaptive control systems, pattern recognition/classification, artificial 
intelligence, computer science, and optimization theory. 

• Part IV: System Applications, edited by Dr. Michael Holz, contains Panel 4's 
survey of some 77 applications of neural networks encountered during the Study, as 
well as a more in-depth description of 11 of them. 

• Part V: Simulation/Emulation Tools and Techniques, edited by Dr. Paul Kolodzy, 
describes Panel 3's assessment of the presently available hardware and software for 
simulation and emulation of neural networks. 

• Part VI: Advanced Implementation Technology, edited by Dr. Jay Sage, dis- 
cusses why implementation - as opposed to simulation - is an important matter in 
neural network research, articulates philosophical issues relating to advanced imple- 
mentations of neural networks in technologies available now and in the foreseeable 
future, summarizes current implementation work, and presents Panel 5's conclu- 
sions. 

Because the body of this Technical Report delineates the findings of the Neural Network Study's five 
separate panels, the reader will find in it an assortment of perspectives and opinions about neural network 
research efforts and their implications. Although the Study's panels functioned independently of each 
other, and although they each approached the topic of neural networks from distinctly different points of 
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view and with different mandates, their conclusions - articulated at the end of each Part of this Technical 
Report - are noteworthy for their consistency and agreement. 

In addition to this Technical Report from the Neural Network Study participants, a separate Executive 
Summary has been published; this document offers a synopsis of the Study's findings and articulates 
technical recommendations for further DARPA involvement in neural network research and development. 
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2.   OVERVIEW OF THE STUDY'S FINDINGS AND CONCLUSIONS 

A brief review of the Study's efforts and conclusions are presented below for those seeking a somewhat 
more cohesive albeit highly synoptic picture. Also, because the field of neural networks is new and its 
technical terminology unfamiliar to many, a glossary of neural network terms is included in Appendix B: 
Neural Network Glossary of Terms. The questions answered on the pages that follow include: 

• Why did DARPA choose to conduct a technical study of neural networks? 

• What did the Study determine to be the theoretical foundations of neural networks? 

• What tools did the Study conclude are presently available to implement neural net- 
works? 

• What neural network applications did the Study find? How many? Are these appli- 
cations well-developed or rudimentary? 

• What advanced implementation technologies will be required for neural network 
development over the next five years? 

• What are the Study's conclusions? 

2.1    WHY NEURAL NETWORKS 

Interest in neural networks as an alternative - that is, a non-Von Neumann - type of computing has been 
building for several years. Some have envisioned neural networks as an alternative to artificial intelligence 
(AI) - indeed, as a way to attack problems AI had been unable to solve. Others believe this new-found 
faith in neural networks to be naive. Between these two perspectives ranges a variety of views about the 
efficacy of neural networks. 

By the summer of 1987, neural networks were attracting so much attention that some 2,000 people at- 
tended a summer meeting on the subject conducted by the Institute of Electrical and Electronics Engineers 
(IEEE), at which hundreds of papers were presented. Another IEEE conference followed in November, 
1987; its 750 attendees considered it an scientific success. Another IEEE-sponsored conference on neural 
networks is scheduled for July, 1988. 

On the commercial side, entrepreneurial spirit has enlivened the neural network community, and several 
start-up enterprises - some with significant venture capital backing - have emerged in the last year or so. 
They have identified commercial opportunities in a number of industries - including defense-oriented 
ones - and are particularly focused on offering systems and software which encourage users to educate 
themselves about and experiment with neural network ideas and concepts. Clippings of headlines from 
1987 reports citing interest in neural networks are shown in Figure 2-1. 

As the headlines in Figure 2-1 reveal, interest in neural networks has not been limited to the United 
States. Both Japan and the European nations have made commitments to neural network research: the 
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Figure 2-1.    Clippings of Headlines from 1987 Reports Citing Interest in Neural Networks. 
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former has initiated a government-sponsored program, called "The Human Frontiers," to look at the bio- 
logical origins of neural networks, and firms such as Fujitsu began developing "thinking computers" espe- 
cially for robotic applications; the European countries, meanwhile, have begun a neural network-oriented 
program called Esprit II. Moreover, under the leadership of Stephen Grossberg in the U.S., Teuvo Ko- 
honen in Finland, and Shun-Ichi Amari in Japan, the International Neural Network Society (INNS) was 
formed in the spring of 1987. The first issue of its journal, Neural Networks, appeared early in 1988 and 
its first conference is scheduled for the latter part of 1988; notably, six IEEE societies are co-sponsors of 
the INNS meeting, and financial support has come from the National Science Foundation, DARPA, and a 
number of other government agencies. 

Some of this interest in neural networks is, perhaps, a result of the hyperbole which almost inevitably 
accompanies the use of phrases like "thinking computers" or "neurocomputers that learn." Hyperbole's 
natural habitat is, after all, the territory between achievement and promise: the greater the potential of 
a new and mostly unexplored avenue of research, the greater the human tendency to imagine it opening 
pathways to both Utopia and dystopia. 

Nevertheless, DARPA's Tactical Technology Office concluded that if neural networks are only partially 
as useful and powerful as suggested even by those whose views are considered conservative, then this 
alternative form of computing and its implications for defense systems require examination. 

The Neural Network Study was undertaken to conduct this examination, which regards a neural net- 
work as a computational structure modeled on biological processes. Biological systems can easily solve 
problems that are very difficult for conventional computers to solve; a pigeon, for example, boasts an im- 
age processing system which is far superior to any capability of modern computer systems. (For a detailed 
and specific definition of 'neural network,' see Appendix B: Neural Network Glossary of Terms and Part 
II: Adaptive Knowledge Processing, Chapters 1 and 2 of this Report.) 

The Study's focus was the two key features which, it is widely believed, distinguish neural networks 
from any other sort of computing developed thus far: 

• Neural networks are adaptive, or trainable. Neural networks are not so much 
programmed as they are trained with data - thus many believe that the use of neu- 
ral networks can relieve today's computer programmers of a significant portion of 
their present programming load. Moreover, neural networks are said to improve 
with experience - the more data they are fed, the more accurate or complete their 
response. 

• Neural networks are naturally massively parallel. This suggests they should be 
able to make decisions at high-speed and be fault tolerant. 

The Study has sought to determine (a) to what extent neural networks are in fact adaptable/trainable 
and massively parallel, and (b) the implications of neural network capabilities, as they have actually been 
used thus far and as they may potentially be exploited in the future. 
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2.2 THEORETICAL FOUNDATIONS OF NEURAL NETWORKS 

A neural network is a computational structure modeled on biological processes. At its most fundamental 
level, interest in neural networks is prompted by two facts: (a) the nervous system function of even a 
"lesser" animal can easily solve problems that are very difficult for conventional computers, including 
the best computers now available, and (b) the ability to model biological nervous system function using 
man-made machines increases understanding of that biological function. 

2.2.1    A Biological Inspiration 

Figure 2-2 illustrates the sort of biological neuron which has influenced the development of "artificial," 
or computational, neural networks. (The neural structure shown here is generic; a lowly leech, for instance 
- as well as other aquatic creatures - has a neural cell structure identical to that of a human being, though 
the manner in which a leech's neurons are connected to each other is much simpler than man's.) Figure 2-2 
shows two neurons in synaptic contact: 

SYNAPSE 

AXON 

Figure 2-2.    Biological Neurons. 

• The soma, or nerve cell, which is the large round central body of the neuron, is 
anywhere from five to 100 microns in diameter; 

• The axon is attached to the soma and is electrically active, producing the pulse which 
is emitted by the neuron; 

• The electrically passive dendrites receive inputs from other neurons by means of a 
specialized contact - this is the synapse, which occurs where the dendrites of two 
different nerve cells meet. 
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The synapse is the tissue connecting neurons and it is capable of changing a dendrite's local potential in 
a positive or negative direction, depending on the pulse it transmits. Note that these transmissions occur 
in very large numbers, but, since they are chemical, they occur fairly slowly. 

The human cerebral cortex, for instance, is comprised of approximately 100 billion (10 ") neurons with 
each having roughly 1,000 dendrites that form some 100,000 billion (1014) synapses; given that this sys- 
tem operates at about 100 Hz, it functions at some 10,000 billion (1016) interconnections per second. It 
weighs approximately three pounds, covers about 0.15 square meters, and is about two millimeters thick. 
This capability is clearly beyond anything which can be reconstructed or modeled; but it is, perhaps, pos- 
sible to understand how the brain performs information processing, and it is hoped that this understanding 
can be modeled and ultimately implemented in hardware. 

(For a more detailed description of the role of neurobiology plays in neural networks — including an 
overview of brain physiology as well as discussions of the biological foundation of neural networks and 
recent results in neurobiology - see Part II, Chapter 13: Neurobiology and Neural Networks of this Re- 
port.) 

2.2.2   The Modest Analogy 

"Artificial" neurons, as illustrated in Figure 2-3, are analogous to their biological inspirers. Figure 2-3 
presents the simplest artificial neuron configuration. Here neurons become processing elements, the axons 
and dendrites become wires, and the synapses become variable resistors carrying weighted inputs that 
represent data or the sums of weights of still other processing elements. 

These inputs - which are voltages that are proportional to weights that have been established - are 
summed across the resistor. The resistor is connected to an operational amplifier on which has been set a 
threshold so that when the sum of these voltages reaches a pre-set threshold, the neuron - or processing 
element - will fire. Figure 2-3 assumes this processing element to be a hard-limiting device: that is, when 
the sum of the voltages is below threshold, the device will have a -1.0 output and not fire; when the sum 
reaches threshold, its output will be +1.0 and the device will fire. 

Processing elements can interact in many ways by virtue of the manner in which they are interconnected. 
Prosaic as it is, Figure 2-3 actually suggests a variety of possibilities: 

• Processing elements which feed forward only; processing elements which have a 
feedback loop. 

• Processing elements that are fully connected to all other processing elements; pro- 
cessing elements that are sparsely connected, linked only to a few others. 

The nature and number of these feedback loops and connections depend on the model, or architecture, 
used to construct the neural network. The design of a neural network's feedback loops has implications for 
the nature of its adaptivity/trainability, while the design of a network's interconnections has implications 
for its parallelism. 
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o 

Figure 2-3.    Artificial Neurons. 

2.2.3    How A Neural Network Learns 

A key neural network feature - trainability or adaptivity - has been demonstrated to the Study. Fig- 
ures 2-4 and 2-5 illustrate the learning capabilities of a neural network, though in an extremely simplified 
way. 

There are many techniques - generally articulated as algorithms - used to train neural networks; they 
fall into three basic categories: 

• Supervised training requires the presence of an external teacher and labeling of the 
data used to train the network. The teacher knows the correct response wanted from 
the network and inputs an error signal when the network produces an incorrect re- 
sponse. The error signal "teaches" the network the correct response in a process that 
is explained below, and after a succession of learning trials the network consistently 
produces the correct response. 

• Unsupervised training uses unlabeled training data and requires no external teacher; 
data is presented to the network, which forms internal clusters that compress the in- 
put data into classification categories. 

• Self-supervised training is used by certain kinds of neural networks. The networks 
monitor performance internally, requiring no external teacher; an error signal is gen- 
erated by the system and fed back to itself, and the correct response is produced after 
a number of iterations. 

Figure 2-4 illustrates in a simplistic way how supervised neural network training works. Here, a single 
neuron is being trained to turn on a light when the sum of two input voltages is greater than 0.5 and turn 
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the light off when the sum is less than 0.5. The neuron will be trained by adjusting the weights W\ and 
Wj, corresponding to input voltages X \ and Xj, and a threshold, 9\. The sum of the inputs and the output 
state are shown on the right of Figure 2-4. 

The supervised training process shown in Figure 2-4 works, through the course of several training trials, 
as follows: 

• In the first trial, the inputs add up to less than 0.5, so the light should be off. How- 
ever, the weight settings and threshold are such that the light is on, so a teacher 
(supervisor) adjusts the weights and threshold to turn off the light. 

• The next trial's inputs sum to greater than 0.5, so the light should be on. But the 
light is actually off because the teacher overcorrected the weight and threshold ad- 
justments on the previous trial. The weights and threshold are therefore again read- 
justed by the teacher to turn the light on. 

• The third inputs' sum is negative and the light turns off, which is correct - so no 
adjustments are made. 

• The next trial results in inputs greater than 0.5 - and the weights and threshold are 
now correctly adjusted so that the light turns on. 

This exercise can be summarized by noting that this simple neural network has learned to identify a 
line in two-dimensional space - as shown in the lower left of Figure 2-4 - given by X\ + Xi = 0.5. 
Correspondingly, with three inputs the network could be trained to identify a plane in three-dimensional 
space; further inputs could allow a neural network to identify the equation of a hyperplane in a higher- 
dimensional space. This geometrical analogy can be extended to many layers of processing elements in a 
neural network, as shown in Figure 2-5. 

Here, again, the single-layer neural network - composed of three processing elements - provides a 
half-plane solution, so it can separate regions A and B in a two-dimensional space. If a second layer of 
processing elements is added, each neural layer can classify a half-plane - and this amounts to a solution 
of the "exclusive OR" problem. The addition of a third processing element in the second layer allows for 
dividing a region into three half-planes - which provides a convex region. If a third layer of processing 
elements is added, two convex regions can be joined - thus arbitrary region formation is possible with a 
three-layer neural network. 

Since geometrical regions are the equivalent of classification regions, a neural network can be trained 
(a) to search for and identify the many primitives that define a complex input space, and (b) to group these 
primitives so that classifications or identifications can be made automatically. 

2.2.4    Massive Parallelism in Neural Networks 

As noted in Figure 2-6, a network of 64 • 64 elements that are fully interconnected can undertake 
millions of simple parallel operations aimed at the dissection of a problem. Figure 2-6 shows a neural 
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Figure 2-5.    Computational Power of Single- and Multi-layer Networks. 
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network with layers M and N; each layer has 4,096 processing elements laid out in a 64 64 grid. If these 
two layers are fully interconnected - that is, if every processing element is linked to every other processing 
element - then this apparently simple structure sorts through no less than 16 million interconnects. 

MASSIVE  PARALLELISM 

2M2 — FULLY INTERCONNECTED = M^N 

—    M, N = 64-16 M INTERCONNECTS 

Figure 2-6.    Massive Parallelism of a Neural Network. 

It is this pyramiding of many simple operations to automatically provide complex classifications that is 
the core of the neural network promise. 

(Part II, Chapter 3: Tasks Neural Networks Perform and Representative Models of this Report offers 
a more detailed look at tasks at which neural networks are effective as well as illustrative neural network 
models and a review of important training and performance issues.) 

2.2.5    The Importance of Surviving the Single-layer Perceptron 

Neural network research is not new - it is, rather, newly revived from an obscurity and even disrepute 
which is now understood to have been undeserved. 
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Work in neural networks, which began nearly 50 years ago, falls into three eras, as described in Fig- 
ure 2-7. The early efforts, in which basic thinking about neural networks was accomplished by McCulloch 
and Pitts, Hebb, Rosenblatt, and others, took place in the 20 years before 1960. 

Then a schism in the AI research community occurred involving Rosenblatt's single-layer perceptron. 
Minsky and Papert of MIT pointed out that the perceptron could not solve the "exclusive OR" class of 
problems, for reasons already explained, whereupon it and neural network research in general were largely 
abandoned by DARPA in favor of work in the apparently more promising realm of symbolic processing. 

(For a lengthier discussion of single- and multi-layer perceptrons, see Part II, Chapter 4: Single- and 
Multi-layer Perceptrons of this Report.) 

This loss of support forced neural network researchers into the "wilderness years" of 1960-1980, which 
- despite a lack of money or support - saw dedicated people develop a variety of mathematical theories 
which laid the foundations for a resurgence of interest and effort in neural networks that has been underway 
since the early 1980s. This resurgence was also fueled by other crucial factors: 

• Understanding of the deficiencies of the single-layer perceptron and the extension 
of theoretical work into multi-layer systems; 

• The revolution in computer technology, which produced powerful and compara- 
tively inexpensive computing devices and diagnostic tools that enabled further work 
on neural network mathematical theories; 

• Simultaneous breakthroughs in the understanding of neurobiological processes. 

2.2.6   Neural Networks and Other Information Processing Approaches 

It is helpful to an understanding of neural networks and their implications to place them in the larger 
context of information processing approaches, for neural networks do not oppose other approaches as 
much as they extend them. 

Figure 2-8 delineates the major thrusts in information processing in a historical sense, beginning with 
system and information theory, which is really about database processing. This was followed by the 
development artificial intelligence techniques for knowledgebase processing. It is certainly worth noting 
that knowledgebase processing has not by any means eclipsed database processing; they are, in fact, quite 
complementary. 

Neural networks have been touted as effective in tackling problems in, among other areas, machine 
vision, robotics, and speech understanding. But it is highly unlikely that neural networks will replace either 
knowledgebase or database processing. They will, the Study expects, find a niche within the whole scheme 
of information processing. The nature of the neural network niche becomes more apparent when neural 
networks as an information processing approach is compared to database and knowledgebase processing. 
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Figure 2-7.    History of Neural Network Research. 
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Figure 2-8.    Comparison of In formation Processing Approaches. 
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The expert system developer is interested in emulating a human expert's way of solving a specific set 
of problems, so he/she observes and analyzes a particular human expert(s), and then models that "intelli- 
gence," or expertise, in a computer program which explicates the rules (heuristic and otherwise) used by 
the human expert. 

More genetically, the system and information theorist models data, analyzes those models seeking the 
optimal algorithm, and then implements that algorithm in hardware. 

If, for instance, the object of a hypothetical vision system is to find a cat in a backyard (as depicted in 
Figure 2-9), current information processing techniques would require that the data containing the visual 
information be extracted from a digitizing preprocessor and entered into a computer; this data would be 
subject to a rather human-intensive analysis, followed by another human-intensive period of algorithm 
development. The algorithm would be implemented on yet another computer which would then be able to 
find the cat. The same system could not be used if, perhaps, the goal is now to recognize a mouse; instead, 
the entire data-gathering, data analysis, algorithm development, and design implementation process must 
be repeated. 

(A more extended discussion of "traditional" information processing, and particularly knowledge-based 
systems, may be found in Part III: Assessment of Neural Network Technology, Chapter 2: Methodology 
of this Report.) 

Neural network designers claim, by contrast, to place the "intelligence" of the network in its architecture 
and adaptation rules, which are optimized not to a single problem or application, but to an entire class of 
problems. The network is trained, either with supervision or in unsupervised mode, with examples. The 
neural network is then implemented either by simulating it on conventional computer hardware or in 
special- purpose neural network hardware. 

Thus, a hypothetical neural network implementation of the system looking for the cat in the backyard 
(Figure 2-10) may not even require the digitization of data; it can, perhaps, be entered directly from a 
sensor into the network in analog form. The neural network might then be trained by voice command to 
recognize the cat. Unlike its conventional information processing counterpart, the same neural network 
can also be trained to recognize a mouse. 

This comparison suggests that neural networks can save substantial amounts of time and human effort 
which, in conventional information processing approaches, are now devoted to data analysis and algorithm 
development. But the Study resists such conclusions, for at least two reasons: 

• Too little is presently known about training time requirements as neural networks 
are scaled up for large, real-world problems. If this training time is extended and 
requires human supervision, it could rival the time and effort demanded by conven- 
tional approaches. 

• It is possible that, at least for the next several years, the time and effort required 
to develop neural network architectures might rival that of conventional algorithm 
development. 

(Part III, Chapter 3: Comparison of Neural Networks With Other Technologies of this Report offers a 
detailed comparison of neural networks and other computational approaches in handling several types of 
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problems, including the traveling salesman problem, associative memories, pattern classification applica- 
tions, computational maps, signal processing, speech applications, and machine vision.) 

That is not to say that substantial work has not been done on neural network architectures, though 
this early work on theoretical models has tended to concentrate on some problem types more than others. 
Pattern classification has seen perhaps the greatest amount of neural network effort to date; but other types 
of problems - including machine vision, speech recognition, robotics, signal processing, and optimization 
- are also being taken on by neural network researchers, who have produced a variety of models to deal 
with them, as Figure 2-11 makes clear. The field of neural networks is in fact very rich; it's not just for 
perceptrons anymore. 

(Detailed descriptions of the many types of neural network models and architectures, as well as the 
problems they address, can be found in Part II, Chapters 4-10 of this Report). 

PATTERN SPEECH MACHINE ROBOTICS SIGNAL OPTIMIZATION/ 
CLASSIFICATION RECOGNITION VISION PROCESSING COMPUTATION 

ADALINE  (LMS) MARTIN BCS/FCS CMAC ADALINE CELLULAR 
SPEECH CEREBELLUM AUTOMATA 

ART PREPROCESSOR DARWIN II MODEL MULTI- 
LAYER HOPFIELD 

BOLTZMANN MASKING FIELD MARKOV COMPUTATIONAL PERCEPTRON NET 
MACHINE 

SILICON 
RANDON 
FIELD 

MAPS 

COMPETITIVE COCHLEA DARWIN III 
LEARNING 

SYNAPTIC 
NEOCOGNITRON 

MULTI-LAYER 
FEATURE  MAP TRIAD PARAMETER 

NET 
PERCEPTRON 

MULTI-LAYER VITERBI NET 
PERCEPTRON SILICON 
(Back Propagation) RETINA 

PERCEPTRON 

REDUCED COLOUMB 
ENERGY (RCE) 

Figure 2-11.    Neural Networks for a Variety of Tasks. 

2.2.7   Conclusions Concerning Theoretical Foundations of Neural Networks 

From its examination of the theoretical foundations of neural networks, the Study has determined that: 

• Neural networks offer important new approaches to information processing 
because of their adaptivity and ability to learn as well as their massive parallelism. 

• Neural network research has matured greatly since the perceptron of the 1950s. 
This maturation has three sources: (a) advancement in mathematical theories, (b) 
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development of new computer tools, and (c) increased understanding of neurobiol- 
ogy. There is bridge forming between the biologically-oriented neural modelers and 
the artificial neural network modelers, and substantial progress will result from this 
alliance. 

• There is a need for research that focuses on training, scaling, and performance 
criteria. Mathematical theories about training neural networks exist now for net- 
works with only modest numbers of processing elements, but researchers are inter- 
ested in scaling up to neural networks containing millions of processing elements. 
So the mathematical foundations concerning how the robustness of large, intercon- 
nected neural networks varies with signal, noise ratios, etc., need to be explored. 
Performance criteria are required to indicate how and where neural networks are 
most effective, and those conclusions need to be proven employing realistic data- 
bases addressing important problems. 

(The conclusions of Study's Technology Assessment Panel (Panel 1) and the Adaptive Knowledge 
Processing Panel (Panel 2) are delineated in this Report in Part 111, Chapter 4: Conclusions Concerning 
the Assessment of Neural Network Technology and Part 11, Chapter 14: Conclusions Concerning Adaptive 
Knowledge Processing, respectively.) 

23    AVAILABLE IMPLEMENTATION TOOLS 

The field of neural networks, as might be expected, has developed its own computational vernacular, 
some understanding of which is necessary to appreciate neural network simulation and implementation 
requirements. Some of the key concepts and terms (see Figure 2-12) are these: 

• A typical neural network contains many more interconnects than neurons, or pro- 
cessing elements. 

• Each interconnect requires one multiply/accumulate operation for summing. 

• While digital computers are normally assessed in terms of storage or memory (where 
the unit of measure is words) and speed (instructions-per- second or floating-point- 
operations-per-second), the neural network vernacular defines storage as the value 
of the input weights and measures it in terms of interconnects; neural network speed 
is described in terms of interconnects-per-second within a layer or between layers. 
(This way of conceiving neural network storage is important only in the case of net- 
work simulation; in the case of implementation in special-purpose hardware, storage 
would be handled by resistive networks and would be defined differently.) 

(A more detailed discussion of the computational requirements of neural networks can be found in Part 
V: Simulation/Emulation Tools and Techniques, Chapter 2: Algorithm and Solution Requirements and 
Chapter 3: Application Computational, Requirements of this Report.) 
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To understand both this neural network computational vernacular and its implications for neural network 
tools and applications, the Study has used the terms interconnects and interconnects-per-second to chart 
a set of coordinates, placing interconnects on the abscissa and interconnects-per-second on the ordinate. 
The environment defined by this chart will reappear throughout the remainder of this summary to describe 
the computational capabilities of present and future neural network systems and applications. 

The Study introduces this environment to chart the computational capabilities of certain biological sys- 
tems, as can be seen in Figure 2-13. Significantly, man - with the staggering capacity of 10,4 interconnects 
and 1016 interconnects per second - is beyond the range of the chart for reasons which will shortly be 
apparent. Within the range of Figure 2-13 are such creatures as the worm, the fly, and the bee. "Lowly" 
as a fly or a bee may seem, neural network researchers would be very pleased indeed to replicate their 
capabilities with a machine. 
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Figure 2-13.    Computational Capabilities of Biological Networks. 

2.3.1    A Simulated World 

That will be difficult with the tools presently available. Figure 2-14 delineates the variety of tools to 
which today's neural network researchers have access. They range from the low-priced microprocessor- 
based workstations, through attached processors and bus- oriented processors, to the more expensive 
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massively-parallel machines (including the Connection Machine developed by DARPA), and finally to 
supercomputers at the very high end. 

Generally, the micro/minicomputers provide a very modest interconnects-per- second capability, though 
in some cases storage capacity is substantial. The speeds of these devices are limiting; neural network 
models take a very long time to run on them. Attached processors improve this situation somewhat, since 
they can boost interconnects-per-second into the millions from the hundreds of thousands. 

Bus-oriented processors, in some cases, raise by an order of magnitude the number of interconnect-per- 
second available, but storage is not equivalently greater. The MX-1/16 shown in Figure 2-14 is actually 
an experimental architecture that is only partially proved but should be able to deliver around 120 million 
interconnects per second, along with 50 million interconnects for storage - this is quite good for meeting 
today's neural network simulation needs. 

The massively parallel systems feature no better speed (interconnects-per- second) than the MX-1, and 
there remain gaps between their speed and storage capabilities. Supercomputers, meanwhile, do not offer 
significantly more capability than systems which cost far less. 

In addition, the programming necessary to run neural network models on these massively parallel ma- 
chines is very complex - it is, in fact, a problem which limits the extent to which these systems can be 
used to conduct neural network research. Moreover, the architectural limitations of these systems prevent 
researchers from stacking up several of them to significantly boost their storage or speed. 

Thus the system most useful to neural network research is one configured like the still-experimental 
MX-1, not only because of its storage and speed - neural network efforts in fact will soon require even 
more than this - but because of the need for user-friendly systems that allow researchers to test a variety 
of neural network ideas against a variety of databases in timely fashion. 

{Part V, Chapter 3: Existing Hardware and Software of this Report conducts a lengthier discussion 
of presently available hardware and software tools for neural network simulation. In addition, detailed 
descriptions of some neural network simulation hardware may be found in this Report in Part V, Appendix 
A: Parallel Processing Hardware.) 

Figure 2-15 charts the presently available simulation tools onto the same set of interconnect and interconnect- 
per- second coordinates upon which the fly and bee were situated in Figure 2-13, with an additional dis- 
tinction between those systems priced less than $100,000 - and therefore more widely available as well 
as much easier to program - and those costing more than $100,000 (the asterisk at the outer edge of the 
present computing capability shown in Figure 2-15 represents the experimental MX-1/16). 

2.3.2    Conclusions Concerning Today's Neural Network Tools 

Upon reviewing the implementation tools presently available to the neural network research community, 
it has become clear to the Study that: 

• The computational units of neural networks are best understood in terms of 
interconnects (storage) and interconnects-per-second (speed). 
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Figure 2-14.   Examples of Neural Network Simulation Hardware. 
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• Today's computer tools - with simulation capabilities of roughly 10 7 intercon- 
nects per second -fall far short of the computational capabilities of even modest 
biological networks; a fly, for instance, computes at the rate of 109 interconnects 
per second. 

• Although the computer revolution of the last 20 years has played a critical role in the 
revival of neural network research by making it possible to undertake much work 
in mathematical theory, the limits of today's computing devices - inadequacies 
in storage, speed, and user flexibility - have restricted present neural network 
efforts. 

(The conclusions of the Study's Simulation/Emulation Tools and Techniques Panel (Panel 3) are artic- 
ulated in Part V, Chapter 6: Conclusions Concerning Neural Network Simulation/Emulation Tools of this 
Report.) 

2.4    STATUS OF CURRENT NEURAL NETWORK APPLICATIONS 

The Study heard from researchers who had developed 77 applications in an assortment of areas, includ- 
ing vision, signal processing, classification, robotics, speech, and sensor fusion (see Figure 2-16). Many 
were redundant, others were comparatively uninteresting. Of the 77 applications reviewed by the study, 
11 which were considered typical of the state of the neural network applications art were selected for more 
detailed review, and several of those are described briefly below. 

(Part IV: System Applications, Chapter 2: Summary of System Applications of this Report contains a 
more detailed summary of the neural network applications presented to the Study, and descriptions of the 
11 highlighted applications, written by the researchers who developed them, comprise Part IV, Appendices 
A-K. Also, a complete list of application contributors as well as brief, one-page summaries of all of the 
applications presented can be found in Part IV, Appendix L: Presentations to the Applications Panel of 
this Report.) 

Figure 2-17 displays the history of the 11 applications reviewed by the Study, which is in large measure 
typical of the present state of the neural network art. Clearly, while much time between 1960 and now has 
been devoted to modeling applications, relatively few fielded applications have emerged; in only a few 
cases were models even demonstrated. Of the 11 applications chosen for closer review by the Study, just 
four of them have been fielded: 

• The Risk Analysis system, developed by Nestor Inc. using the reduced Coulomb 
energy (RCE) neural network model, handles the functions of a loan officer in a fi- 
nancial institution. The system is trained in ongoing fashion using both the successes 
and failures of loan officers as well as ancillary information about the characteristics 
of people who repay their loans and those who default. It has been shown to be as 
effective as the best human loan officer in spotting bad risks. 
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Figure 2-16.    Application Survey. 

• The Process Monitor is a single-layer neural network being installed by GTE in a 
fluorescent lightbulb manufacturing facility. The network monitors the activities of 
the production line, using inputs from a variety of sensors to infer when the line is 
operating correctly, and shuts the line down if something is wrong. 

• The Word Recognizer is a small application of limited capability - its vocabulary is 
100 words - built by Intel Corp.; it has enjoyed commercial success. 

• The Adaptive Channel Equalizer, which is perhaps the most commercially success- 
ful of all neural network applications to date, is a single-neuron device used now in 
virtually all long-distance telephone systems to stabilize voice signals. 

The Study found that there has not been extensive neural network application development generating 
available products that accomplish some useful task. Of the 77 application efforts described to the Study, 
just the four described above have thus far resulted in fielded systems. What's more, all of these fielded 
systems are operating on personal computers, and none are using any special-purpose neural network 
hardware. Overall, because of the general lack of support for neural network research, neural network ap- 
plications remain limited. But the potential of neural networks begins to become evident with a somewhat 
closer look at various application efforts. 

2.4.1    Application: The Kanji Character Recognizer 

Figure 2-18 illustrates Nestor Inc.'s Kanji Character Recognizer, which, in this depiction, is translating 
handwritten Kanji characters for "neural network" into English. This system can accurately recognize 
approximately 2,500 handwritten Kanji characters better than 92% of the time. This compares favorably 
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Figure 2-17.    Development of Neural Network Applications. 

with the average Japanese reader, who is capable of recognizing between 1,800 and 3,000 characters; an 
intellectual has a grasp of perhaps 10,000 characters. 

One useful feature of this system, thanks to the fact that it's a neural network, is that upon training it is 
capable of recognizing any alphabet - e.g., Cyrillic, Hebrew, etc. 

The Kanji Character Recognizer is based on Nestor Inc's NLS (Nestor Learning System), a set of 
neural network modules based on the reduced Coulomb energy (RCE) architecture. Each of the NLS 
three-layer neural network modules is defined to process a different feature subspace of inputs; the RCE 
architecture allows each network to describe a class- separating mapping that can support any required 
degree of nonlinearity between pattern class territories. A controller module synthesizes the outputs of 
the individual neural networks and directs their training. 

The Nestor Learning System is a software simulation which operates on an IBM PC/AT personal com- 
puter or workstations from Sun Microsystems or Apollo Computer. 

2.4.2   Application: Perception 

Figure 2-19 shows the results of a neural network now under development that is based on Grossberg's 
boundary contour system (BCS), a neural network model incorporating neurobiological insights about 
perception. 

Many algorithms for machine vision that are based on symbolic processing techniques are designed to 
deal with just one type of information - such as boundary, disparity, curvature, shading, spatial frequency 
- using different mathematical schemes to analyze each of information. Often, then, other types of signals 
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NESTOR  LEARNING SYSTEM (RCE) 

Figure 2-18.    Kanji Character Recognizer (Nestor). 

act as contaminants - noise - rather than as cooperative sources of ambiguity-reducing information. The 
boundary contour system, by contrast, clarifies scenic data about boundaries, textures, shading, depth, 
multiple spatial scales, and motion and cooperatively synthesizes this data in real time into a coherently 
fused representation that is more informative than a representation derived from any one type of scenic 
data taken in isolation. 

Figure 2-19 illustrates work presently underway using a BCS neural network to process multi- dimen- 
sional image data from laser radar sensors. Of course, a human being who sees a tank partially hidden by 
a tree nevertheless understands that he/she is observing a whole, single tank. 

But conventional computer systems do not perform this task well, so a BCS neural network has been 
used here to automatically complete and fill in the boundaries of a tank which were obliterated in an 
actual laser radar image by two trees and other noise, as shown in the range silhouette in the lower left of 
Figure 2-19. Although the neural network operates slowly, the segmented image of the tank is ready for 
further processing. 

This work is being done on a Digital Equipment Corp. VAX system; the neural network contains 
400,000 neurons and 17 million interconnects. 

2.4.3    Application: Sonar Target Discrimination 

Figure 2-20 describes a neural network developed by Sejnowski that remotely detects undersea mines in 
shallow waters using active sonar returns. Although it is often difficult for both humans and conventional 
classification systems to distinguish between mines and clutter on the sea floor, this three-layer neural 
network based on the backpropagation learning model successfully discriminated between sonar returns 
of an undersea rock and cylinder. 
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The network consisted of 60 input processing elements, or units, in the first layer whose states were 
"clamped" to the amplitude of the preprocessed sonar signal in the power spectral envelope; a hidden 
second layer of between 0 and 24 units; and a third output layer of two units - one for cylinder and one 
for rock. Network training involved approximately 30,000 trials using 104 patterns. Upon testing with 
another 104 patterns, the network accurately distinguished between rocks and cylinders 90% of the time, 
which compares favorably with the performances of both human operators and conventional classifiers. 

"CYLINDER" ROCK" 
OUTPUTS 

POWER 
SPECTRAL 
ENVELOPE 

HIDDEN UNITS (12) 

INPUTS (60) 
CM 

t 

Figure 2-20.    Sonar Target Discrimination (Sejnowski). 

2.4A   Application: Multi-layer Perceptron Vowel Classifier 

Figure 2-21 indicates how a multi-layer perceptron neural network developed by Lippmann has been 
used as a vowel classifier. 

Conventional speech recognition systems do not perform well when their task is to recognize continuous 
speech from more than one talker because of several factors, including: (a) the variability and overlap of 
information in the acoustic signal, (b) the need for high computational rates (a human- like system must 
match inputs to 50,000 words in real time), and (c) the multiplicity of analyses - phonetic, phonemic, 
syntactic, and pragmatic - that must be performed. 

The input for the network shown in Figure 2-21 consisted of the first and second formants (i.e., the 
regions of concentration of energy which combine to make up the frequency spectrum of a spoken sound) 
from roughly 330 tokens often different vowels spoken in context by 67 men, women, and children. Half 
the data was used for training the network; the other half was used to test it. 

The network was trained using backpropagation with 50,000 trials. The network's error rate proved to 
be the same as the best conventional classifier, and the decision regions it formulated were the same as 
those which were hand-drawn by a human expert. 
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2.4.5 Application: Forklift Robot 

Figure 2-22 illustrates the use at Martin Marietta of a neural network based on the CMAC model (cere- 
bellar model articulation controller) to operate an industrial robot. 

The CMAC is, basically, a trainable function generator. Using a table look-up method to implement 
complex nonlinear functions implicitly rather than by the mathematical solution of equations, CMAC can 
realize any smooth and continuous function using simple learning procedures and can operate in real time 
on conventional digital computers. The system described in Figure 2-22 was implemented on a Motorola 
68020. 

Guided by the neural network, the robot, which has a forklift end effector equipped with a series of 
infrared proximity sensors, is supposed to insert the forklift into pallets placed irregularly on a conveyor. 
This is a difficult problem for conventional robotic controllers because the relationship between a particular 
pattern of sensor readings and the appropriate direction of forklift movement is very complicated. 

The network was trained by a human operator who grasped the forklift and positioned it into the pallet; 
during this learning procedure, the network's weights are adjusted so that the sensor inputs generate a 
trajectory command that's similar to the command generated by the human operator. This network has 
learned to acquire the pallet from any arbitrary starting point with as few as seven teaching points. 

2.4.6 Conclusions Concerning Current Neural Network Applications 

Although neural network application efforts are diverse, they share one factor, which can be seen in 
Figure 2-23. Here, the computational requirements of the current applications reviewed by the Study are 
charted along the same coordinates of interconnects (storage) and interconnects-per-second (speed) which 
were depicted for biological organisms in Figure 2-13 and for neural network simulators in Figure 2-15. 
Notably, these applications occupy only the small dark space at the lower left corner of Figure 2-23 - a 
space well within the bounds of present simulation capabilities. 

(A discussion of the computational requirements of various types of neural network applications - 
including signal processing, robotics, speech, pattern recognition (vision), and some of the applications 
presented to the Study's Systems Applications Panel - may be found in Part V, Chapter 4: Application 
Computational Requirements of this Report.) 
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From its examination of current neural network application efforts, the Study offers these specific con- 
clusions: 

• Most of today's neural network applications have been accomplished - in the ab- 
sence of funding for this work - through simulation on low-cost personal computers. 
Not surprisingly, current application requirements are consistent with available 
simulation speed and storage requirements. 

• Despite these limitations, there have been significant demonstrations of such key 
neural network capabilities as adaptivity and learning. 

• Interest in application research and development runs high in the neural net- 
work community. 

(Part IV, Chapter 3: Conclusions Concerning Neural Network System Applications of this Report con- 
tains the conclusions drawn by the Study's System Applications Panel (Panel 4).) 
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Figure 2-23.    Computational Requirements for Current Applications. 
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2.5    PROJECTED COMPUTATIONAL CAPABILITIES FOR ADVANCED SIMULATORS 

With even modest levels of funding and motivation, the gap between actual and potential exploitation of 
current hardware capabilities will be eliminated rather quickly. But it is certainly evident from Figure 2-13 
and Figure 2-15 that neural network researchers face a much greater and more difficult gap: the one 
between the present hardware state-of-the-art and the capabilities required to implement neural networks 
that rival the computational storage and speed of, say, a bee. 

From the perspective of researchers, this gap is not merely about storage and speed and their inevitable 
corollary - cost. The gap between what is now available and what researchers need is also filled with 
other issues - especially the need for greater ease of programming, better information display, and more 
flexible systems. All of these matters need to be addressed so researchers can move beyond simulations 
of neural networks to their actual implementation. 

2.5.1 The Limits of Neural Network Simulation 

Figure 2-24 indicates the present state of hardware affairs in the context of interconnects (storage) and 
interconnects-per-second (speed): simulators stand at the outer edge of today's capabilities - but, although 
they exist, for the most part they are not very user-friendly for research, statistical work, or development 
of large databases. However, as Figure 2-24 also shows, several technologies are poised to push hardware 
capabilities beyond their present speed and storage limits: 

• Gallium arsenide (GaAs) and special-purpose charge- coupled devices (CCDs) will 
push up the ceiling on interconnects-per- second. 

• Continued developments in random-access memory (RAM) technology as well as 
the lesser-developed three-dimensional (3-D) chip technology are expected to ex- 
pand current storage capacities. 

• Multiprocessing, meanwhile, will allow the boundaries of simulation to be moved 
outward up to an order of magnitude. 

(Part V, ChapterS: Considerations for Future Simulations as well as Part VI: Advanced Implementation 
Technology, Chapter 1: Overview and Part VI, Chapter 2: General and Philosophical Issues of this Report 
offer expanded discussions of present and future technologies for neural network simulation.) 

2.5.2 Technologies and Tools for Implementing Neural Networks 

Certainly, if neural networks are to offer solutions to important problems, those solutions must be imple- 
mented in a form that exploits the physical advantages offered by neural networks: the high throughput 
that results from massive parallelism (realtime operation), small size, and low power consumption. In 
the near term, smaller neural networks may be digitally implemented using conventional integrated cir- 
cuit techniques. But in the longer term, implementation of neural networks will have to rely on new 
technologies. 
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The alternatives - as illustrated in Figure 2-25 - for direct implementation of neural networks include: 

• Direct VLSHVHSIC (very large scale integration/very high speed integrated cir- 
cuits), which is a mature technology limited to a low density of interconnects due its 
two-dimensional nature. All the weights in a neural network implemented in direct 
VLSI/VHSIC would have to be stored in memory, which would consume a lot of 
capacity. Figure 2-25 shows a Bell Laboratory chip for vision preprocessing which 
has been implemented directly in VLSI. 

• Analog VLSI, which is still a developing technology but promises near-term results 
and - although it, too, is two-dimensional - offers a high density of interconnects 
because the weights can be implemented in resistors, thereby obviating the need for 
additional memory. 

• Optical technology, which is less developed and longer-term than the silicon-based 
approaches and limited in the types of neural networks that it can implement, but 
which offers a very high density of interconnects due to its three-dimensional na- 
ture. Here information is stored holographically; another optical system attempts 
to "read" the information in the first system - comparisons between the stored in- 
formation and that which the second system attempts to recognize are a form of an 
associative memory. 

(The rationale for these new technologies necessary for neural network implementation, as well as a 
more detailed description of the technologies themselves, is explicated in Part VI, Chapter 2: General 
and Philosophical Issues of this Report.) 

There are, of course, variations on these ideas and combinations of these technologies which are being 
considered, including layering two-dimensional chips to achieve three-dimensionality and the combina- 
tion of optical and VLSI devices to create three-dimensional structures. 

A variety of experimental chips are now being developed; these are plotted in Figure 2-26 along the 
storage and speed coordinates and against both current applications and current simulators. 

The California Institute of Technology's (CIT) silicon retina, developed by Mead, is indicated at the 
lower left of Figure 2-26; this work will be extended to array of 128 128 in the near term, bringing its 
capabilities to roughly 104 interconnects and 108 interconnects per second. Lincoln Laboratory (LL) is 
developing several analog and hybrid analog-digital chips; the Jet Propulsion Laboratory (JPL) and AT&T 
(ATT) are working on analog and digital chips. 

With single chips, speed can be increased by several orders of magnitude, approaching 1012 in the next 
few years. These chips could be stacked up - as many as a thousand, or several thousand, of them might 
be linked - to bring their collective storage capability to around 10 8 or 10 9. 

In addition, Northrop Corp. (NC), has developed an optical neural network that is projected to perform 
at better than 10 8 interconnects and 10 9 interconnects per second-through the use of an improved crystal. 

47 



• DIGITAL VLSI/VHSIC 

— MATURE TECHNOLOGY 

— LOW SYNAPSE DENSITY — 2D 

• ANALOG VLSI 

— DEVELOPING — NEAR TERM 

— HIGH SYNAPSE DENSITY — 2D 

• OPTICAL 

— DEVELOPING — LONG TERM 

— VERY HIGH SYNAPSE DENSITY — 3D 

1 

Figure 2-25.    Direct Implementation Approaches. 
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Thus, as Figure 2-26 makes clear, the computational environment defined approximately by 1010 in- 
terconnects and 1012 interconnects per second will be filled over the next five or six years with proposed 
technology developments. 

These new chips are needed not only to build neural network simulators, but they may become very 
valuable individually in neural network-based military applications. 

SINGLE 
CHIP 

MULTIPLE 
CHIPS 

OPTICAL 
SUBSYSTEM 

STORAGE (interconnects) 

Figure 2-26.    Implementation Technologies and Potential Applications. 

{Part VI, Chapter 3: Survey of Implementation Efforts of this Report offers both a taxonomy of neural 
network implementation and a summary of present implementation experiments. Part VI, Appendix A: 
Description of Implementation Projects, meanwhile, offers brief descriptions of current efforts to imple- 
ment neural networks in hardware.) 

2.5.3    Conclusions Concerning Projected Technology Development 

The Study has concluded that technological development in neural network storage and speed require- 
ments will establish the sort of trend line depicted in Figure 2-27. 

Above the timeline in its middle, Figure  2-27 deals with speed - that is, interconnects-per-second. 
Several technological thrusts are underway here: 
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• The digital signal processing (DSP) chip. DSP experimentation has reached the 
commercial marketplace - Hecht-Nielsen Neurocomputer Corp., for instance, is us- 
ing one in its machine. Combining several DSP chips - developers of the MX-1 
multiprocessor use 16 - will result, the Study expects, in useful simulators emerg- 
ing over the next few years. 

• Advanced versions of the Cray supercomputer, of course, will be available - but the 
Study has found that it cannot be expanded for neural network development work. 

• Gallium arsenide (GaAs) is expected to be viable for neural network use in the next 
five years. Here again, a number of gallium arsenide chips can, the Study anticipates, 
be combined to boost interconnects-per-second into the 1010 region. The Study also 
believes that ideas for a charge-coupled device (CCD) chip will see fruition in about 
three years, as will an analog-digital hybrid chip. 

• Optics, which is the least mature of all the technologies that are viable for neural 
network research, stands at the far end of the timeline. 

If these capabilities are to have any meaning for neural network development, there must be concomitant 
progress in storage capacity. Fortunately, the Study predicts there will be. The lower half of Figure 2-27 
describes the Study's projections of storage technology development: 

• The one-megabyte dynamic RAM (DRAM) is widely available, and, hopefully, it 
will be followed soon by the 16-megabyte version. 

• Both wafer-scale and analog storage is expected in three and four years, respectively. 

• Optical storage, while under development, remains a little uncertain at the present 
time. 

What Figure 2-27 makes clear is that technological developments in interconnects and interconnects- 
per-second could essentially keep up with each other over the next five-plus years. The Study there- 
fore has concluded that neural network research and development will not face major hardware bot- 
tlenecks through this period if a balanced technology development program is pursued. 

(The conclusions of the Study's Advanced Implementation Technology Panel (Panel 5) can be found in 
Part VI, Chapter 4: Conclusions Concerning Advanced Implementation Technology of this Report.) 

2.6 GENERAL CONCLUSIONS OF THE NEURAL NETWORK STUDY 

After its examination of the theoretical foundations of neural networks, the simulation and implemen- 
tation tools currently available as well as those becoming available over the next five or six years, and the 
status of current neural network applications, the Study has concluded that: 
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• Neural networks offer important new computational structures. Their real 
strength is derived from their ability to self-adapt and learn. If neural networks 
realize their full potential, they can be used for machine vision, speech recogni- 
tion, signal processing, robotics, and other applications - without the need for 
application-specific software. 

• Neural network research has matured greatly since the perceptron of the 1950s, 
thanks to the development of advanced mathematical theories and new computer 
tools, and also to a better understanding of neurobiology. It is time for DARPA to 
re-examine neural network capabilities. 

• There have been significant demonstrations of neural network capabilities in 
vision, speech, signal processing, and robotics, perhaps not to the scale which 
might be desired - due to a lack of funding of research - but the variety of problems 
addressed by neural networks is impressive. 

• Hardware capabilities are limiting the development of important neural net- 
work applications. It is clear that if researchers are not provided with improved 
simulation and implementation capabilities, the field of neural networks will 
once again drift off into the wilderness. 
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APPENDIX    A 
LIST OF PRESENTATIONS 

Yaser Abu-Mostafa, California Institute of Technology 
12-09-1987: Practical Results From NN Theory 

A. Agranat, California Institute of Technology 
12-14-1987: Semiparallel Microelectronic Implementation of NN Models Using CCD Technology 

J. Albus, National Bureau of Standards 
10-22-1987: Robotics 

Joshua Alspector, Bell Communications Research 
10-16-1987: Electronic Learning Networks 

Charles Anderson, Jet Propulsion Laboratory 
12-10-1987: Strategy Of Biological Systems 
01-20-1988: Biological Systems From An Engineering Point of View 

David Andes, Naval Weapons Center 
11-11-1987: Thoughts On The Fuze Problem 
11-12-1987: Analog Neural Network Using Floating Gate Technology 

Bernard Angeniol, Thomson CSF 
01-06-1988: Self-Organizing Maps And The Esprit Program 

Michael Arbib, University of Southern California 
12-07-1987: Neural Network Simulator 

Jacob Barhen, Oak Ridge National Laboratory 
10-08-1987: Neural Networks, Combinatorial Optimization And Asynchronous Computation 
12-07-1987: Concepts Of Asynchronous Processing 
12-10-1987: Applications Of Neural Networks In Robotics 

Eric Baum, Jet Propulsion Laboratory 
12-10-1987: Neural Nets And Optimization Problems 
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Guy Blelloch, Massachusetts Institute of Technology 
11-03-1987: Implementation OF Back Propagation On The Connection Machine 

Anselm Blumer, Tufts University 
02-08-1988: Theoretical Developments On Machine Learning 

J. Bower, California Institute of Technology 
12-07-1987: Biological Simulations Of NN On Hypercube 
12-10-1987: Introduction Of NN Technology Into Applications 

Michael Brill, SAIC 
12-17-1987: Retinal Photoreceptor Model 

Heinrich Buelthoff, Mass. Institute of Technology 
01-21-1988: Motion Detection In Fly And Machine Vision 

Michael Cain, Booz-Allen and Hamilton, Inc. 
11-17-1987: Sensor Data Fusion 

Gail Carpenter, Center for Adaptive Systems 
10-09-1987: Invariants Of Neural Networks For Adaptive Pattern Recognition And Robotics 
12-22-1987: ART-II 

Patrick Castelaz, Hughes Aircraft 
11-18-1987: Neural Network Technology And Applications 

Tony Chan, UCLA 
12-09-1987: Discussion Of Parallel Multi-Grid Methods 

C-C. Chen, Simmons College 
12-17-1987: Modern Data Storage And Retrieval Systems 

Alice Chiang, MIT/Lincoln Laboratory 
12-02-1987: CCD Neural Net Processor And CCD Retina 

Avis Cohen, Cornell University 
01-05-1988: Central Pattern Generator For Locomotion Modeled As A System Of Coupled Limit- 
Cycle Oscillators 
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Dean Collins, Texas Instruments 
01-05-1988: Adaptive Radar Processing 

D. Coon, University of Pittsburgh 
11-09-1987: New Artificial Network Technology 

Leon Cooper, Brown University 
10-09-1987: Neural Networks In Real World Applications: Biological And Computational Con- 
straints 

Robert Cooper, Atlantic Aerospace Corporation 
12-14-1987: Strategic Computer Program Planning 
01-14-1988: Strategic Computer Program Planning 

Jack Cowan, University of Chicago 
02-09-1988: Neural Net Survey; Eye-Brain Connections 

Oliver Curme, Battery Ventures 
01-06-1988: Venture Capitol Financing Of A Neural Net Company 

John Daugman, Harvard University; Psychology Depart. 
01-19-1988: Biological Early Vision Mechanisms 

Robert Dawes, Martingale Research Corporation 
11-11-1987: On The Simulation Of Neural Networks And Other Dynamical Systems 

Gerald Edelman, Neural Sciences Institute 
02-02-1988: Neural Darwinism 

Mitchell Eggers, MIT/Lincoln Laboratory 
01-05-1988: Biological Learning/Adaption For Pattern Processing 

Richard Elsley, Rockwell Science Center 
12-09-1987: Hopfield Net Application To Planning And Robotics 

Robert Farber, Los Alamos National Laboratory 
11-09-1987: Large Neural Network Simulations On Crays 
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Nabil Farhat, University of Pennsylvania 
12-14-1987: An Optical Stochastic Neural Network 
01-22-1988: Radar Target Recognition From Partial Information Based on Models Of Neural Net- 
works 

Jerome Feldman, Rochester University 
10-09-1987: Massive Parallelism In Nature And Computer Science 

John Fiala, National Bureau of Standards 
11-02-1987: Robotics At NBS And Application Of Cerebella Model Arithematic Computer (CM AC) 

George Fucik, TRW 
11-18-1987: BM/C3 

Lynn Garn, Center for Night Vision and EO 
01-20-1988: Application Of Neural Networks To Target Classification 

Jack Gelfand, SRI International 
11-19-1987: A Multidisciplinary Study Of Integrated Adaptive Systems 

A.P. Georgopoulos, Johns Hopkins University 
01-07-1988: Coding Of Movement Direction By Neuron a I Populations 

Nigel Goddard, California Institute of Technology 
11-12-1987: ANN Simulation 

R. Goodman, California Institute of Technology 
12-10-1987: Some Considerations In Applying Neural Nets To Decision Systems And Expert Sys- 
tems 

Paul Gorman, Allied Signal 
01-22-1988: Learned Classification Of Sonar Target Using A Massively Parallel Network 

Hans Graf, ATandT Bell Laboratories 
10-16-1987: Electronic Neural Network Integrated Circuits 
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Guenter Gross, North Texas State University 
01-05-1988: Importance Of Investigating Mammalian Neural Network Parameters For Neural Mod- 
eling 

Stephen Grossberg, Boston University 
10-09-1987: Neural Networks And Combinatorial Optimization 
01-19-1988: A Neural Network For Multiple Scale Filling In Of Fuse 3-D Visual Representations 

Norberto Grzy wacz, Massachusetts Institute of Technology 
01-05-1988: Motion Measurement In Invertebrate 

C. Guest, UCSD 
12-14-1987: Optical Neurocomputing at UCSD 

Allon Guez, Drexel University 
10-14-1987: Adaptive Robotic Control 

Todd Gutschow, HNC 
12-08-1987: Simulators And Applications Of NN 

Daniel Hammerstrom, University of Oregon 
12-07-1987: Neural Net Simulation And Evaluation 

Robert Hecht-Nielsen, HNC 
11-09-1987: Perspectives On Neural Network Research 
11-10-1987: Military Applications Of Neural Networks 

Neville Hogan, Massachusetts Institute of Technology 
12-18-1987: Tool-Use In Biological And Artificial Systems 

Frank Hoppenstaedt, Michigan State University 
01-05-1988: Phase-Locking Of Neuronal Circuits 

David Hubel, Harvard Medical School 
10-08-1987: Neural Mechanisms For Processing Visual Information 

Larry Jackel, Bell Laboratories 
11-11-1987: The Bell Labs Perspective On Funding For Neural Networks 
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Von Jennings, Martin Marietta 
01-22-1988: Trainable And Adaptable Neural Nets For Robot Control 

K. Johnson, University of Colorado 
11-11-1987: Optical Implementation Of Neural Networks 

Leonard Johnson, Yale University 
12-16-1987: Simulations Of Differential Equations On A Parallel Machine 

Chuck C. Jorguesen, Thomson CSF 
01-06-1988: Robot Navigation 

Alex Jourjine, Analog Intelligence Corporation 
10-30-1987: Random Code Neural Networks 

Matthew Kabrisky, AFIT/ENG 
12-18-1987: Processing Of Laser Radar Data With Neural Nets 

J. Katz, Jet Propulsion Laboratory 
12-14-1987: Optoelectronic Neural Networks 

Knut Kongelbeck, Hughes Aircraft 
10-19-1987: Exploratory Applications Of Neural Networks 

F. J. Kub, Naval Research Laboratory 
12-03-1987: Programmable Analog Synapes; Learning Implementations 

Robert Kuczewski, TRW 
12-08-1987: Mark III, IV, And V Neurocomputers From TRW 

S-J. Kung, Princeton 
11-09-1987: Systolic Neural Network Processor 

Michael Kuperstein, Wellesley College 
10-14-1987: Neural Networks For Adaptive Hand Eye Coordination 
12-18-1987: Neural Dynamics Of Adaptive Sensory Motor Control 
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Alan Lapedes, Los Alamos National Laboratory 
11-09-1987: Large Neural Network Simulations On Cray 

James Leonard, AFWAL 
11-18-1987: Multifunctional C02 Laser Radar For Automatic Target Recognition 

Ralph Linsker, IBM 
01-07-1988: Towards An Organizing Principle For A Perceptual Network 

James Mann, MIT/Lincoln Laboratory 
12-02-1987: Self-Organizing Kohonen Network 

Christie Marrian, Naval Research Laboratory 
12-03-1987: Electronic 'Neural' Net Algorithm For Solving 111 Posed Problems 

Orin Marvel, Hughes Aircraft 
11-17-1987: Future Command And Control Systems 

Bimal Mathur, Rockwell 
12-09-1987: Vision Chip Development At Rockwell 

D. Maxwell, Levco 
12-08-1987: Transputer Board For High Speed Simulation 

Harold McBeth, General Dynamics 
12-09-1987: Sensor Target Classification With A Neural Net 

Murali Menon, MIT/Lincoln Laboratory 
12-17-1987: Target Classification Using A Neural Net 

W.T. Miller, University of New Hampshire 
11-02-1987: Learning Algorithms For Robotic Control 

Michael Miller, Washington University 
01-19-1988: Entropy, Markov Random Fields, And Constrained Optimization 
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Ennio Mingolla, Boston University 
01-07-1988: A Neural Network Architecture For Pre-Attentive Visual Segmentation 

Marvin Minsky, Mass. Institute of Technology 
10-20-1987: Progress in Neural Networks? 

Alan Moopenn, Jet Propulsion Laboratory 
12-07-1987: Development Of A NN Simulator/Emulator 

A. Murray, University of Edinburgh 
11-12-1987: Bit Serial VLSI Implementations 

Michael Myers, TRW 
12-09-1987: Neural Net Applications At TRW 

Krishnan Natarajan, MIT/Sloan School of Management 
11-02-1987: Review Of Neural Network Study For Merril Pickard 

William O'Neill, Rochester University 
01-07-1988: Computational Maps For Echo Location In Bat Cortex 

J. Michael Oyster, Hughes 
01-06-1988: Adaption Edge Detection For ATR; A Guideline For Demonstrating the Advantage Of 
NN For Intelligent Sensor Processors 

John Pearson, SRI International 
11-19-1987: A Multidisciplinary Study Of Integrated Adaptive Systems 
12-18-1987: Applications Of Computational Maps 

Andre Pellionisz, NYU Medical Center 
10-14-1987: Tensor Geometry Connecting Neural Science And Robotics 

Clif Penn, Texas Instruments 
11-11-1987: Digital Image Processor Approach To Neural Net Simulation 

Leonid Perlovsky, Nichols Research 
11-17-1987: Multiple Sensor Fusion For Discrimination 
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Fernando Pineda, Johns Hopkins University 
01-22-1988: Applications And Implementation Of Dynamical Adaptive Systems 

Tomaso Poggio, Mass. Institute of Technology 
10-20-1987: Computer Vision vs. AI And NN 
01-20-1988: Computer Vision And Neural Networks 

Edward C. Posner, Jet Propulsion Laboratory 
12-10-1987: Application Areas For NNs 

Jack Raffel, MIT/Lincoln Laboratory 
10-09-1987: Electronic Circuits For Neuromorphic Systems 
12-02-1987: Wafer Scale Neuromorphic Systems Design 

Todd Reed, University of Minnesota 
11 -04-1987: Segmentation Of Textured Images And Gestald Organization Using Spatial/Spatial Fre- 
quency Represent 

Ronald Rivest, Massachusetts Institute of Technology 
02-05-1988: Theoretical Developments On Machine Learning 

Steven Rogers, AFIT 
12-18-1987: Processing Of Laser Radar Data With Neural Nets 

David Rumelhart, Stanford University 
10-09-1987: Neurally Inspired Networks 

Howard Rumsey, Consultant 
12-10-1987: Associative Memories 

Thomas Ryan, SAIC 
11-10-1987: GINNI: A Neural Network Simulator 
12-17-1987: Artificial Adaptive Neural Network Systems 

Doyce Satterfield, USASDC / Strategic Defense Command 
11-17-1987: BM/C3 The Paramount Strategic Defense Problem 
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Walter Schneider, University of Pittsburgh 
01-20-1988: Models For Focus Of Attention In Human Vision 

Eric Schwartz, NYU Brain Research 
10-08-1987: The Interface Between Neuroscience And Computer Science 
01-07-1988: Computational Mapping 

Terrence Sejnowski, Johns Hopkins University 
10-09-1987: Analyzing The Hidden Units In Multilayered Neural Networks 
01-05-1988: Computing Shapes From Shading With Neural Networks 

Gordon Shaw, Univ. of California at Irvine 
01-21-1988: Spatial-Temporal Coding In Dynamic Models Of Brain Function And Potential Appli- 
cations 

David Skapura, Ford Aerospace and Communications Corp. 
12-11-1987: Practical Expert Systems, Neural Networks, And Frame Based AI 

Charles Sodini, Massachusetts Institute of Technology 
12-03-1987: Silicon Implementation Issues For Vision Processing; The MIT Database Accelerator: 
A Novel Content Addressable Memory 

Bernard Soffer, Hughes Research Laboratory 
10-08-1987: Optical Implementation Of Neural Networks 

David Spencer, MIT/Lincoln Laboratory 
10-30-1987: AI In Air Traffic Control 

Hal Stoll, Northrop Research and Technology Center 
11-19-1987: DARPA ATR Optical Processors 

William Stoner, SAIC 
12-17-1987: Neocognitron Evaluation 

Ted Sullivan, Princeton 
01-07-1988: Computational Maps For Auditory Space Localization In The Owl's Brain Stem 

Richard Sutton, GTE Laboratory 
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01-06-1988: Connectionist Learning For Computer Integrated Manufacturing 

Harold Szu, Naval Research Laboratory 
10-15-1987: The Sixth Generation Computers And Super Technology 

A. Tanguay, 
12-14-1987: Fundamental Limits of Photorefractive Materials and Devices 

David Tank, Bell Laboratories 
10-08-1987: Neural Networks For Optimization Problems 

M. Fernando Tenorio, Purdue University 
11-12-1987: Simulations And Emulations 

Anil Thakoor, Jet Propulsion Laboratory 
11-12-1987: New Technology For Analog Synapses Based On Ion Transport 

Tomasio Toffoli, Massachusetts Institute of Technology 
11-04-1987: Cellular Automata As Neural Networks: Pattern Recognition And Tracking 

David Touretzky, Carnegie Mellon University 
11-11-1987: Back Propagation On The Warp Supercomputer 

K. Wagner, University of Arizona 
11-11-1987: Optical Implementation Of Neural Networks 

Deborah Walters, SUNY/Buffalo 
01-19-1988: Features, Representations And Computation For Neural Networks 

David Waltz, Thinking Machines Corporation 
10-20-1987: Connectionist And 'Neural Net' Models 

Allen Waxman, Boston University 
10-20-1987: Mobile Robots vs. Neural Navigators 
01-19-1988: Motion Computation In Vision 
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Harry Wechsler, University of Minnesota 
11-04-1987: Distributed Processing For Invariant Recognition And Data Fusion 

Fred Weingard, Booz-Allen and Hamilton, Inc. 
11-18-1987: Laser Radar Signal Interpretation 

James White, Honeywell Research Center 
11-17-1987: Application Of Neural Networks 

Harper Whitehouse, Naval Ocean Systems Center 
10-27-1987: Advances In Technology For Signal Processing 

Bernard Widrow, Stanford University 
10-08-1987: Theory And Applications Of Layered Neural Networks - Past And Future 

George Works, SAIC 
12-08-1987: Development Of Anspec Software And Delta! Hardware For NN Simulation 

G. Rakuljic Yarviv, Stanford University 
12-14-1987: Photorefractive Materials and Applications in Phase Conjugate Optics 

Ben Yuhaz, Johns Hopkins University 
01-22-1988: Mapping Visions To Phonemes For Visual Speech Recognition 
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APPENDIX    B 
NEURAL NETWORK GLOSSARY OF TERMS 

ACAMs (Associative Content Addressable Memories) Neural networks whose associative 
memory is content-addressable. I.e., when such a network is stimulated with some 
fragment of an associated memory or pattern, the network will respond with the 
entire memory or pattern. Thus the network can be addressed using a partial pattern 
or memory rather than just its location. See also "Associative Memory." 

Adaline (Adaptive Linear Neuron) A member of a family of trainable pattern-classifiers which 
distinguishes between patterns on the basis of linear discriminate functions. See also 
"Perceptron," "Multi-layer Perceptron," and "Single-layer Perceptron." 

Adaptive Resonance Theory (ART) A type of neural network model trained without super- 
vision which is used in pattern classification problems. ART actually describes two 
classes of neural networks (ART I and ART II) that form categories for input data 
with the coarseness of the categories determined by the value of a user-selectable 
parameter (called the vigilance parameter). 

Associative Memory A memory which allows retrieval of information by presentation of in- 
exact or incomplete stored memory keys. Such a memory is tolerant of partial or 
partially erroneous information. The Hamming Network is an example of an asso- 
ciative memory. Also called 'content-addressable memory' and 'associative learn- 
ing.' See also "ACAMs (Associative Content Addressable Memories)." 

Axon In biological systems, a nerve process attached to the soma which, unlike the dendrite, 
is electrically active and can serve as the final output channel of the neuron. An 
axon acts as a nonlinear threshold device that produces a rapid voltage increase 
or decrease, called an 'action potential.' An action potential is the pulse emitted 
by a neuron. See also "Dendrite," "Neuron," "Neurotransmitters," "Soma," and 
"Synapse." 

Backpropagation A learning algorithm for updating weights in a multi-layer, feedforward, 
mapping neural network that minimizes mean squared mapping error. 

Bidirectional Associative Memory A type of neural network model which is a hetero-associative 
version of the Hopfield Network. 

Boltzmann Machine A type of supervised neural network learning algorithm in which net- 
work states are determined by "simulated annealing." Boltzmann machines use a 
noise process to find the global minimum of a cost function. 

Boundary Contour System (BCS) A type of neural network algorithm used in image seg- 
mentation problems. 
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Cellular Automata A mathematical formalization for parallel processes. Specifically, a cellu- 
lar automaton is a graph whose nodes are finite-state machines (thus the underlying 
graph, or 'space,' of a given cellular automaton is considered to be fixed; it cannot 
be altered by any of its nodes). The operation of a cellular automaton is determined 
by information passed between those nodes that are connected (in most cases, the 
interconnections between nodes pass information bidirectionally). 

Cerebellum In biological systems, the part of the brain which researchers believe controls vol- 
untary movements. The cerebellum is present in all vertebrates and, in comparison 
with the cerebrum, has a notably regular and simple architecture. 

Cerebral Neocortex In biological systems, the major part of the cerebrum, containing most 
of the brain's neurons. 

Cerebrum In biological systems, the brain. 

CMAC (Cerebellar Model Articulated Controller) A type of neural network model which 
adaptively forms complex nonlinear maps and is typically used in motor control 
problems and defined by a redundant but direct, one-to-one, feedforward connection 
topology. 

Cochlea Chip An analog VLSI circuit modeled after the biological cochlea (a part of the mam- 
malian ear). 

Competitive Learning An unsupervised learning algorithm in which groups of processing el- 
ements in a neural network compete among themselves to respond to a set of stim- 
ulus input patterns. The winner within each group is the one whose connections 
make it respond most strongly to the pattern; the winner then adjusts its connections 
slightly toward the pattern that it won. 

Computational Maps Two-dimensional arrays (often stacked along a third dimension) of lo- 
cally interconnected processing elements that represent variables or objects by the 
position and pattern of activity on their surfaces. Computational maps exhibit prop- 
erties of topological self- organization, self-optimization, and fault tolerance. 

Connectionism This term is based on an assumption shared by most massively-parallel com- 
putational formalisms: that only a small number of bits of information can be sent 
from one processor to another. Hence, an important conventional computer mech- 
anism - i.e., passing complex symbolic structures - cannot be used directly. So the 
burden of computation is put on the connection structure of the network. 'Connec- 
tionist' systems have become largely synonymous with neural networks. 

Connectivity Neural networks exhibit several kinds of patterns of connectivity between their 
processing elements, depending on the neural network model being used. 

Processing elements, or nodes, may be fully connected, locally connected to neigh- 
boring nodes, or sparsely connected to a few distant nodes. In addition, networks 
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may be layered and the processing elements, or nodes, in these layers linked by 
means of feedback or feedforward connections. 

See also "Feedback," "Feedforward," "Full Connectivity," "Local Connectivity," 
"Nearest Neighbor Connectivity," "Sparse Connectivity," and "Neural Network." 

Convergence Procedure In some neural networks, after a finite number of presentations to the 
network of given stimulus- response patterns, the values of the network's weights 
approach the set of values representing whatever computation or classification that 
is embodied in the stimulus-response patterns. 

Crosstalk The overlap of input patterns in a neural network, which can result when a net- 
work does not have enough processing elements to allow one element or a group of 
elements to be reserved exclusively for every possible input pattern. 

Darwin III Automaton A type of neural network model using self-supervised training; this 
model is a complex simulated automaton that learns to follow a moving target and 
touch the target with a multi-jointed arm. It is an instantiation of a developing theory 
of brain function called 'neural darwinism.' 

Dendrites In biological systems, the long, irregularly- shaped nerve processes attached to the 
soma which either (a) receive inputs from other neurons via specialized contacts 
called synapses or (b) connect other dendrites to synaptic outputs. Dendrites are 
electrically passive; the geometry of their tree- like shapes can have major effect 
on the time course and final potential of any synaptic activation. See also "Axon," 
"Neuron," "Neurotransmitters," "Soma," "Synapse." 

Distributed Representation Each entity or concept is represented by a pattern of activity dis- 
tributed over many processing elements, and each processing element is involved 
in representing many different entities or concepts. As opposed to local or unary 
representation. See also "Grandmother Cells" and "Local Representation." 

Dryware Idiom for man-made systems which perform information processing, control, or em- 
ulation of human intelligence; used in contrast to 'wetware.' See also "Wetware." 

Excitation See "Neurotransmitters" and "Weight." 

Fan-in The number of processing elements that either excite or inhibit a given unit. 

Fan-out The number of processing elements directly excited or inhibited by a given unit. 

Feedback Characterized by multi-layer neural networks with recursive connections that iterate 
over many cycles to produce an output. An example of a feedback neural network 
is the Hopfield Network. Contrasted with 'feedforward.' See also "Connectivity" 
and "Feedforward." 
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Feedforward Characterized by multi-layer neural networks whose connections exclusively 
feed inputs from lower to higher layers; in contrast to a feedback network, a feed- 
forward network operates only until its inputs propagate to its output layer. An 
example of a feedforward neural network is the multi- layer perceptron. See also 
"Connectivity" and "Feedback." 

Fixed Weight See "Weight." 

Formal Neurons Simplified artificial representations of biological networks of neurons based 
on a proof that all those processes which can be described with a finite number of 
symbolic expressions - e.g., simple arithmetic, recursive application of logical rules, 
etc. - can be embodied as simple logical switches (published by W.S. McCulloch 
and W.H. Pitts in 1943). Also called McCulloch-Pitts networks. 

Full Connectivity All processing elements, or nodes, in a neural network are connected to 
all other processing elements, or nodes; also 'fully connected.' In contrast to local 
and sparse connectivity. See also "Connectivity," "Local Connectivity," "Nearest 
Neighbor Connectivity," and "Sparse Connectivity." 

Graceful Degradation In neural networks, the notion that no single processing element or 
neuron is essential to the network's operation; network performance gradually dete- 
riorates as more and more processing elements are destroyed, but there is no single 
critical point at which performance breaks down. 

Grandmother Cells In neural networks, processing elements which store memory on a one- 
to-one basis. See also "Distributed Representation," "Local Representation." 

Hamming Network A neural network algorithm, based on the Hopfield Network, which is 
used in pattern classification problems. The feedforward Hamming Network is no- 
table for requiring fewer connections than the Hopfield Network. Also called the 
'unary Model.' 

Hebbian Learning A learning algorithm in which the repeated excitation of the interconnec- 
tion between two processing elements causes the strength, or weight, of that inter- 
connection to increase. 

Hidden Units Those processing elements in multi-layer neural network architectures which 
are neither the input layer nor the output layer but are located in between these and 
allow the network to undertake more complex problem-solving (i.e., nonlinear map- 
ping) than networks with no hidden units. Also called 'hidden layers of processing 
elements.' 

Hippocampus In biological systems, the part of the brain, located in the temporal lobe of the 
cerebrum, thought to be the site of formation of short-term or working memories, 
especially those related to spatial aspects of a biological organism's environment. 
Like the cerebellum, the hippocampus has a strikingly regular structure. 
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Hopfield Network A type of neural network model characterized by full connectivity, feed- 
back, and unsupervised training which is used in pattern classification and optimiza- 
tion problems. 

Indium Bump Bonding A technology under development for connecting non-silicon infrared 
detector arrays to silicon integrated circuit preamplifiers and signal processors. Bump 
bonding is being proposed as a means of achieving massively parallel interconnec- 
tions of neural networks. 

Inhibition See "Neurotransmitters" and "Weight." 

Input See "Processing Element" and "Weight." 

Interconnect The links or information channels between a neural network's processing el- 
ements. The pattern of these interconnections must be appropriate to the neural 
network's application. See also "Connectivity," "Neural Network," "Processing El- 
ement," and "Weight." 

Kohonen Self-organizing Feature Map A type of neural network learning algorithm which 
does not require explicit tutoring of input-output correlations and spontaneously 
self-organizes upon presentation of input information patterns. It is used in opti- 
mization and pattern classification problems. 

Kurogi Spatiotemporal Pattern Recognition Model A neurobiological neural network model 
trained with supervision which attempts to model and predict internal neuron dy- 
namics. 

Layers The processing elements of a neural network are arranged into layers (also called 
'slabs'). Although the weights of each of the processing elements in a layer may 
vary, all processing elements in a layer have the same transfer function. See also 
"Connectivity." 

Learning Algorithms In neural networks, the equations which modify some of the weights of 
processing elements in response to input signals and values supplied by the transfer 
function; the learning algorithm(s) employed in a neural network allow the process- 
ing elements' responses to input signals to change over time. 

LMS (Least Mean Square) Algorithm A modification to the perceptron convergence pro- 
cedure which can form the least mean squared solution in certain problems. This 
solution, used the Adaline, minimizes the mean squared error between the desired 
output of a perceptron-like network and the actual output. See also "Adaline." 

Local Connectivity The processing elements, or nodes, in one layer of a multi-layer neural 
network are connected only to the corresponding nodes in other layers. In contrast to 
full and sparse connectivity. See also "Connectivity," "Full Connectivity," "Nearest 
Neighbor Connectivity," and "Sparse Connectivity." 
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Local Representation In neural networks, the use of one processing element to represent each 
entity or concept. Also called unary representation; as opposed to distributed repre- 
sentation. See also "Distributed Representation" and "Grandmother Cells." 

Markov Random Field Network A type of neural network algorithm used in optimization 
problems and closely related to cellular automata. 

Marr Neocortex Model A neural network model trained with supervision which attempts to 
determine the function of biological cell layers in the neocortex. 

Multi-layer Perceptron A multi-layer feedforward neural network that is fully connected and 
which is typically trained by the backpropagation learning algorithm. 

Nearest Neighbor Connectivity A type of local connectivity in which a neural network's pro- 
cessing elements, or nodes, are connected to those processing elements, or nodes, 
which are physically contiguous. See also "Connectivity," "Full Connectivity," "Lo- 
cal Connectivity," and "Sparse Connectivity." 

Neocognitron A type of neural network model used in pattern classification problems. The 
neocognitron model combines an unsupervised learning algorithm with a multi- 
layer architecture designed to provide pattern recognition with tolerance to posi- 
tional shifts, geometric distortion, and scale variation. 

Neural Network An information processing system which operates on inputs to extract in- 
formation and produces outputs corresponding to the extracted information. Also 
called 'artificial neural networks,' 'connectionist models,' 'parallel distributed pro- 
cessing models,' 'neuromorphic systems.' 

Specifically, a neural network is a system composed of many simple processors - 
fully, locally, or sparsely connected - whose function is determined by the connec- 
tion topology and strengths. This system is capable of a high-level function, such as 
adaptation or learning with or without supervision, as well as lower-level functions, 
such as vision and speech pre-processing. The function of the simple processor and 
the structure of the connections are inspired by biological nervous systems. 

The key attributes of neural networks are (a) massive parallelism, which results in 
high-speed decisions and potential fault tolerance, and (b) adaptivity, which means 
neural networks can be trained rather than programmed in the classical way, and 
their performance may improve with experience. 

A neural network is described by either an algorithm (which specifies the functional 
transformation from inputs to outputs) and/or an implementation (the physical real- 
ization of the processing mechanism that runs the algorithm). 

See also "Connectivity," "Processing Element," and "Weight." 

Neurodynamics The study of the generation and propagation of synchronized neural activity 
in biological systems. 
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Neuron The nerve cells in biological systems. These can be categorized into two broad types 
- local processing 'interneuron' cells and output cells. Each neuron has an inside 
and an outside separated by a plasma membrane. The inside of the cell and the 
fluid surrounding the cell have different concentrations of charged ions which create 
a potential difference across the membrane; these differential ion concentrations 
provide the electrical energy for all nerve cells (just like a battery). See also "Axon," 
"Dendrite," "Neurotransmitters," "Processing Element," "Soma," and "Synapse." 

Neurotransmitters In biological systems, specialized molecules that act across synapses and 
which open up neural membrane channels that permit ionic currents (i.e., action po- 
tentials) to act. Neurotransmitters and currents either depolarize the membrane, re- 
sulting in neural excitation, or hyperpolarize it, resulting in neural inhibition. Some 
50 different neurotransmitters have been identified so far; some appear to play an 
important role in determining patterns of neural interconnections. See also "Axon," 
"Dendrite," "Neuron," "Soma," and "Synapse." 

Output See "Processing Element" and "Weight." 

Pattern Classifiers Mappings that define partitionings of feature space into regions corre- 
sponding to class membership. 

Percept run A member of a family of trainable pattern-classifiers which distinguishes between 
patterns on the basis of linear discriminate functions. See also "Adaline," "LMS 
Algorithm," "Multi-layer Perceptron," and "Single-layer Perceptron." 

Processing Element The simple processors (also called 'neurons' after their biological inspi- 
ration, or, simply, 'units') that are the essential units of which a neural network is 
comprised. 

Every processing element, which is endowed with only a small amount of local 
memory, receives one or more inputs from other processing elements or from exter- 
nal sources; these inputs are then modified by some weighted value specific to each 
input according to a learning algorithm. The sum of the products of the different 
weights times their individual inputs is then computed by the processing element. 
The processing element generates a single output signal that depends on these input 
sums. This single output signal can be fanned out to some number of other process- 
ing elements or be used as output from the network. 

See also "Connectivity," "Neural Network," and "Weight." 

Receptive Fields In some multi-layer neural networks, a processing element in the hidden 
layer(s) may receive input from a group of neighboring units, called the receptive 
field. 

Reduced Coulomb Energy (RCE) Network A type of neural network model used in gen- 
eral classification problems and characterized by a sparse, feedforward connection 
topology and supervised training. 
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Relaxation In neural networks, the notion that computation proceeds by iteratively seeking 
to satisfy a large number of weak restraints; thus connections represent constraints 
on the co-occurrence of pairs of processing elements. The network settles into a 
solution rather than calculating one. 

Retina Chip A type of neural network model used as a VLSI vision front-end and character- 
ized by local connectivity. 

Self-organization The autonomous modification of the dynamics of a complete neural net- 
work via learning in some or all of its processing elements to achieve a specified 
result. See also '"Self-supervised Training," "Supervised Training," and "Unsuper- 
vised Training." 

Self-supervised Training A means of training adaptive neural networks; self-supervision is 
used by automata which require internal error feedback to perform some specific 
task. For example, automata which learn to track a moving spot by controlling 
simulated eye muscles can generate an error signal based on the distance between 
the position of the spot on a simulated retina and the center or fovea of the retina. 
See also "Self- organization," "Supervised Training," and "Unsupervised Training." 

Simulated Annealing A stochastic computational technique derived from statistical mechan- 
ics for finding near globally-minimum-cost solutions to large optimization prob- 
lems. 

Single-layer Perceptron A type of neural network algorithm used in pattern classification 
problems and trained with supervision. The single- layer perceptron generated much 
interest when it was initially developed in the 1950s by Rosenblatt because of its 
ability to learn to recognize simple patterns. Connection weights and the thresholds 
in a perceptron can be fixed or adapted using a number of different algorithms. See 
also "Adaline" and "Perceptron." 

Site Function In a neural network, a processing element's inputs are connected to specific 
sites. A processing element may have more than one "input site." Each site has 
an associated site function which carries out local computation based on the input 
values at the site. 

Soma In biological systems, the large, round central body of a neuron which contains the ge- 
netic and metabolic machinery necessary to keep the neuron alive. See also "Axon," 
"Dendrite," "Neuron," "Neurotransmitters," and "Synapse." 

Sparse Connectivity The processing elements, or nodes, in a neural network are connected to 
only a few distant other processing elements, or nodes. In contrast to full and local 
connectivity. See also "Connectivity," "Full Connectivity," "Local Connectivity," 
and "Nearest Neighbor Connectivity." 
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Stochastic A process involving a randomly determined sequence of observations, each of 
which is considered as a sample of one element from a probability distribution. Sto- 
chastic variation implies randomness as opposed to a fixed rule or relation in passing 
from one observation to the next in order. 

Supervised Training A means of training adaptive neural networks which requires labeled 
training data and an external teacher. The teacher knows the desired correct response 
and provides an error signal when an error is made by the network. This is some- 
times called 'reinforcement learning' or 'learning with a critic' when the teacher 
only indicates whether a response was correct or incorrect but does not provide 
detailed error information. Also called 'hetero-associative learning.' As opposed 
to unsupervised training, self-organization, and auto-associative learning. See also 
"Self-organization," "Self-supervised Training," and "Unsupervised Training." 

Synapse In biological systems, the tissues connecting neurons. Synapses are the specialized 
contacts on a neuron which are the termination point for axons from other neurons. 
Synapses make contact with the dendrites from other neurons and are capable of 
changing a dendrite's local potential in a positive or negative direction. See also 
"Axon," "Dendrite," "Neuron," "Neurotransmitters," and "Soma." 

Transfer Function The differential (or difference) equations which determine each process- 
ing element's operation. These equations describe how the output signal evolves in 
time as a function of the input signals. 

Unsupervised Training A means of training adaptive neural networks which requires unla- 
beled training data and no external teacher. Data is presented to the network and in- 
ternal categories or clusters are formed which compress the amount of input data that 
must be processed at higher levels without losing important information. This clus- 
tering task is sometimes called 'vector quantization.' See also "Self-organization," 
Self-supervised Training," and "Supervised Training." 

Value Unit Coding In neural network data representation, the encoding of the value of a vari- 
able as the location of an active processing element, or node. Such nodes are often 
arranged in an orderly fashion to form a topographic map of some external variable. 

Variable Unit Coding In neural network data representation, the encoding of the value of a 
variable as the amplitude of the output of a processing element, or node. 

Vector Quantization See "Unsupervised Training." 

Viterbi Network A neural network architecture which implements a temporal decoding algo- 
rithm used for nonlinear-analog-processing-based speech recognition. 

Weight A processing element (or neuron or unit) need not treat all inputs uniformly. Process- 
ing elements receive inputs by means of interconnects (also called 'connections' 
or 'links'); each of these connections has an associated weight which signifies its 
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strength. The weights are combined into a simple value in order to update the pro- 
cessing element's potential. 

The processing element communicates with the rest of the network by transmitting 
this simple value to all the other processing elements to which it is connected. This 
output value is often described in terms of a level of excitation (which is quite dif- 
ferent from the binary on-off typical of digital systems). A processing element's 
potential reflects the amount of excitation it has been receiving from other process- 
ing elements. 

There is a separate processing element dedicated to each possible value of each of 
the parameters defined in the system (a neural network with pre- defined parame- 
ters is considered fixed). Since a consistent state in the network requires that there 
should be only one active value for each parameter, the network has mutually in- 
hibitory connections among the competing values for each parameter. Thus the net- 
work itself embodies mutual constraints and its behavior is characterized by states 
where a coalition of mutually reinforcing processing elements becomes stable and 
suppresses its rivals. In a neural network there are, therefore, many active process- 
ing elements forming one or more coalitions. Any given processing element will 
participate in several coalitions and need not have a simple response pattern. 

See also "Connectivity," "Processing Element," and "Neural Network." 

Wetware Idiom for biological systems which exhibit a capacity to perform information pro- 
cessing functions, control functions, or intelligence; used in contrast to dryware. 
See also "Dryware." 
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1.   OVERVIEW 

1.1    INTRODUCTION 

Neural networks are systems made of many simple processing elements operating in parallel whose 
function is determined primarily by the pattern of connectivity. These systems are capable of high-level 
functions, such as adaptation or learning, and/or lower level functions, such as data preprocessing for vi- 
sual or auditory inputs. Neural networks are inspired both by biological nervous systems and mathematical 
theories of learning, information processing, and control. 

1.2    NEUROBIOLOGY 

The design of neural networks draws heavily on developments in the field of neurobiology. Recent 
neurobiological studies have demonstrated neural plasticity with training in the somatosensory (sense 
of touch) cortex of mammalian brains [186] and in the hippocampus (an area of the brain required to 
form long-term memories) [24,164,243]. Studies have also been successful in determining the function 
of sensory areas in the brain responsible for early vision and hearing. Little is known of the functioning 
of high-level brain structures such as the neocortex. Neurobiological studies have also led to a detailed 
understanding of some complex neural structures, such as those in the bat used to process sonar return 
signals [251] and those in the owl used to localize prey via auditory inputs [136,137,146]. 

Some neural network models are biologically unrealistic and use overly simplified neurons. Other more 
realistic and complex models are being developed and explored as simulation and analysis techniques 
improve and as results from neurobiological studies are disseminated. For example, recent neurobiological 
research has demonstrated that many types of map-like data representations are used in biological brains 
[17,137]. Some of these map-like representations are now being used in neural network models [17,148, 
268]. Other work has demonstarted that complex types of temporal processing and nonlinear operations 
are performed in neurons. Complex neuron models are also being used in neural network models [48,67, 
150,215,225,257]. 

Finally, biological studies have demonstrated that there are multiple distinct neural structures in the brain 
which interact to perform various sensory functions. Neural network researchers have begun to explore 
more complex multi-module structures that share this characteristic of biological brains [114,148,215]. 

1.3    MATHEMATICAL THEORY 

Mathematical theory in the field of neural networks builds on results from many other fields of science 
- including pattern classification theory, information theory, nonlinear system theory, optimization theory, 
machine learning theory, game theory, automata theory, population dynamics, and evolution theory. Neu- 
ral network researchers are, however, establishing a unique and strong theoretical foundation by exploring 



the limitations and capabilities of specific networks and algorithms and by exploring the theoretical lim- 
itations of learning in different contexts. This research has been surprisingly successful in a number of 
areas. These include: 

• New Parallel Computer Architectures. The approach to achieving realtime re- 
sponse using fine-grain parallelism has led to large supercomputers, such as the 
Connection Machine [102], and analog VLSI chips for hearing and vision prepro- 
cessing modeled after the cochlea and retina [ 183,185]. This approach has also led to 
parallel analog architectures to implement some of the most promising algorithms 
in the fields of vision and hearing [140,158,207] as well as almost all traditional 
classifiers [142,157]. New neural network classifiers often require less memory and 
simpler computations during training than more conventional approaches and pro- 
vide faster responses by using fine-grain parallelism. 

• Learning Theory. The emphasis on learning and adaptation has led to a long string 
of neurally inspired adaptive classification algorithms beginning with theperceptron 
convergence procedure and the least mean square (LMS) algorithm and extending to 
the more recent hackpropagation, feature map, and reduced Coulomb energy (RCE) 
algorithms. These algorithms have driven theoretical advances in pattern classifica- 
tion and machine learning theory. Recent work is exploring three important areas. 
One consists of building hierarchical networks which use combined unsupervised 
and supervised learning. Such networks have been suggested by many researchers 
[96,100,114,264] and recent work has demonstrated rapid formation of complex 
mappings with little supervised training [96,114]. 

Recent work is also exploring an area called "distribution-free learning" which is 
associated with the work of Valiant [127,265]. This work focuses on determining 
those types of input/output mappings that are learnable. Here a mapping is consid- 
ered learnable if the time it takes to learn it grows less than exponentially in the 
number of inputs. This work indicates that specific types of data representations 
and network structures are necessary to provide rapid learning for classification and 
decision problems. 

Other empirical and theoretical work involves examining the properties of robot- 
like automata that learn by interacting with objects in a simulated environment 
[215,221,256]. Some of these automata build internal models of the environment 
over time and can then use these models to plan future actions. Although the neces- 
sity of building internal models of the world has often been noted [15,247,255], it is 
only recently that inroads have been made in this area. This work is opening up an 
important area of learning where internal models of a limited environment are built 
through interaction and do not have to be pre-programmed into the network. Learn- 
ing algorithms using this approach could solve one of the most important problems 
in the field of artificial intelligence - that of obtaining and using common sense 
knowledge. 



• New Parallel Neural Network Algorithms. A focus on fine- grain parallelism has 
led to the development of new algorithms for speech, vision, and robotics applica- 
tions. These new algorithms either provide better performance, faster response, or 
are easier to implement in parallel architectures than more conventional algorithms. 
New highly parallel algorithms represent one of the major approaches in the vision 
field. Neural network algorithms are also beginning to be explored in the fields of 
speech recognition and robotics. 

• Explaining and Modeling Neurobiology. Developments in computational neural 
networks have the side effect of helping to model neurobiological systems. This 
is typified by the recent use of backpropagation to generate receptive fields similar 
to those of posterior parietal neurons [283]. As neurobiological techniques become 
more advanced and the response of many neurons can be measured simultaneously, 
neural network models will become more and more important in analyzing data and 
suggesting directions for further study. 

1.4   CONCLUSIONS 

Further basic research is necessary before important new neural network applications should be ex- 
pected. This research should focus on basic issues of learning, data representation, and network structure 
in the application areas of vision, speech, and robotics. 

Overall, this is a fascinating research field. It has good potential for providing realtime vision and 
speech recognition and for developing more powerful automatic learning techniques and capable learning 
automata. Although this field has received little funding, its potential has been demonstrated by recent 
empirical results with multi-module networks and learning automata, by recent theoretical results, and by 
serious interest expressed by not only students, but also by seasoned researchers and Nobel laureates. 



2. BACKGROUND 

2.1    INTRODUCTION 

As noted in the beginning of Chapter 1: Overview, neural networks are systems made of many sim- 
ple processing elements operating in parallel; their function is determined primarily by the processing 
elements' pattern of connectivity. Despite the simplicity of their components, these systems are capa- 
ble of high-level functions, such as adaptation or learning, as well as lower level functions, such as data 
preprocessing for visual or auditory inputs; they are inspired by biological nervous systems. 

Adaptive neural networks can be trained using supervised, unsupervised, or self-supervised training. 
Supervised training requires labeled training data and a teacher who provides error information. Unsu- 
pervised training forms internal clusters automatically with unlabeled data. Self-supervised training uses 
internal monitoring and error correction to improve performance without an external teacher. 

Neural networks are characterized by their topology and the internal data representations used to repre- 
sent external variables. Many representations, such as topological maps, are motivated by representations 
observed by neurobiologists. 

The recent resurgence of interest in neural networks is due to many factors, including new algorithms 
and models, new neurobiological information, the availability of computers for simulations, new interest 
in parallel algorithms, and continuing interest in modeling brain function. 

2.2    THE PANEL'S CHARTER 

The Neural Network Study's Adaptive Knowledge Processing Panel (Panel 2) was mandated to gather 
together those mathematical and neurobiological findings that form a theoretical framework for the field 
of neural networks. Important models, learning algorithms, mathematical proofs and derivations were 
reviewed by the Panel, as were recent developments in neurobiology. 

This chapter introduces neural network models and a taxonomy used to classify these models. The fol- 
lowing chapters review important models as well as developments in neurobiology and cognitive science 
and other related fields. They also provide an assessment of the theoretical basis of the neural network 
field and recommendations for further work. 

2.3   DEFINING 'NEURAL NETWORK' 

It is worth repeating again: a neural network is a system composed of many simple processing elements 
operating in parallel whose function is determined by network structure, connection strengths, and the 
processing performed at computing elements or nodes. As noted already, neural networks can perform 
high-level tasks, such as adaptation or learning, or low-level tasks, such as preprocessing sensory input 
data for vision tasks or speech recognition. Neural network architectures are inspired by the architecture 



of biological nervous systems, which use many simple processing elements operating in parallel to obtain 
high computation rates. Figure 2-1 illustrates this definition. 

NEURAL NETWORK PROCESSING ELEMENT 

Figure 2-I.    Example of a Neural Network and a Nodal Processing Element. 

A small interconnected neural network is presented on the left side of this figure and one simple type 
of processing element or node is presented on the right side. This particular node sums all inputs and 
passes them through a nonlinearity. Nodes are almost always nonlinear, typically analog, and may be 
slow compared to modern digital circuitry. Nodes may also include temporal integration and other types 
of time dependencies and also mathematical operations more complex than summation. 

Architectures and processing elements used in neural network models are simplified versions of those 
observed in biological nervous systems. Figure 2-2 illustrates a number of different types of biological 
neurons and a small biological neural network. 

CEREBELLUM 
NETWORK 

PYRAMID 
NEURON 
(Cortex) 

BIPOLAR 
NEURON 
(Retina) 

Figure 2-2.    Biological Neurons and a Small Biological Neural Network. 



As can be seen, biological networks contain many types of neurons, many sub-networks, and rich con- 
nectivity. Characteristics of biological neural networks that artificial neural network models hope to pro- 
vide include: 

• Fault tolerance to loss of a small number of computational elements, 

• Insensitivity to small variations between computational elements, 

• The need for primarily local connectivity and local learning rules, 

• Realtime response, and 

• Parallelism. 

2.4 TRAINING PROCEDURES 

Adaptive neural networks can be trained using using three types of training procedures: 

• Supervised training, which requires labeled training data and an external teacher. 
The teacher knowns the desired correct response and provides a feedback error sig- 
nal after each trial. This is sometimes called reinforcement learning or learning with 
a critic when the teacher only indicates whether a response was correct or incorrect 
and does not provide detailed error information. 

• Unsupervised training, sometimes called self- organization, uses unlabeled train- 
ing data and requires no external teacher. Data is presented and internal categories 
or clusters are formed which compress the amount of input data that must be pro- 
cessed at higher levels without losing important information. Clustering is an impor- 
tant component of many pattern classification procedures [55,98]. It is sometimes 
called vector quantization when used to convert analog inputs into a binary form 
suitable for transmission or storage [168]. 

• Self-supervised training is used by automata which monitor performance inter- 
nally and require no external teacher. For example, automata which learn to track a 
moving spot by controlling simulated eye muscles can generate an error signal based 
on the distance between the position of the spot on a simulated retina and the center 
or fovea of the retina. Self-supervision is sometimes called learning-by-doing or 
learning by experimentation. 

2.5 TOPOLOGY 

Patterns of connectivity between nodes vary across neural network models. Nodes may be only locally 
connected to neighbors, fully connected to all other nodes, or sparsely connected to a few distant nodes. 



In addition, networks may be layered with exclusively feedforward connections from lower to higher 
layers as in multi-layer perceptrons [225] or provided with recurrent feedback connections as in fully- 
connected Hopfield networks [109]. 

Networks with recurrent connections must iterate over many cycles to produce an output, while feedfor- 
ward networks must operate only until the inputs propagate to the output layer. Feedback networks may 
be unstable for certain conditions, while feedforward networks have guaranteed stability. An unstable 
network will have outputs that oscillate, that vary chaotically over time, or that lock up to fixed values. 

2.6 DATA REPRESENTATION 

Past work on artificial intelligence and neurobiology has demonstrated the importance of data represen- 
tation. This importance has been substantiated by research with neural network models which can support 
many different types of internal data representations. 

Distributed representations, where the value of an internal variable is represented by outputs of many 
nodes over a wide region, are used, as are local representations, where the value is represented by outputs 
of only a few nodes [226]. 

In addition to this dichotomy, variables can be represented using value unit and variable unit coding 
[17]. Variable unit coding encodes the value of a variable as the amplitude of the output of a node. 
Value unit coding encodes the value of a variable as the location of an active node. Such nodes are often 
arranged in an orderly fashion to form a topographic map of some external variable such as frequency of 
a tone (tonotopic map). In the extreme, each node represents one possible value of the variable. More 
typically, coarse coding, coarse-fine, or interpolation codings [67,226,18,268] are used where a few nodes 
are used to represent a variable value with high precision. These nodes have overlapping response regions 
as are found in biological networks. 

2.7 RECENT INTEREST AND POTENTIAL 

Artificial neural network models have been studied for many years in the hope of achieving human-like 
performance in the fields of speech recognition, machine vision, and robotics. The recent resurgence of 
interest in neural networks is due to many factors, including: 

• The development of new training algorithms [4,105,225] and network design pro- 
cedures [112,258]. 

• The demonstration of the ability of relatively simple networks to perform human- 
like tasks, such as associative recall [109,111] and forming text-to-phoneme rules 
[232]. Also the demonstration that neural networks can solve complex combinato- 
rial problems, such as the traveling salesman problem [112,258]. 

• A renewed interest in adaptive algorithms and the desire for systems that self-organize 
and learn from examples to reduce programming time. 



• The demonstration that parallel analog neural networks can be implemented in VLSI 
at high densities [182,184,183]. 

• The realization that human-like tasks, such as visual object recognition and speech 
recognition, are extremely difficult and will require massive parallelism for realtime 
response. 

• Interest in new parallel computer architectures resulting in computers such as the 
Connection Machine with 64,000 parallel processors [102]. 

• Developing experience with different data representations suitable for parallel pro- 
cessing, and the demonstration of the importance of data representation from the 
fields of artificial intelligence and neurobiology. 

• The relatively recent widespread availability of affordable, powerful computers for 
simulation studies. 

• A continuing interest in building systems that have some of the parallelism, adap- 
tivity, and fault tolerance of biological brains. 

• The presumed failure of more conventional approaches to problems in the fields of 
vision, speech, and robotics. 

Although much of the current interest was inspired by work on a few relatively simple models [109, 
112,232], the Adaptive Knowledge Processing Panel found that a solid theoretical foundation is being 
built, complex multi-module neural network structures are being developed, and researchers from many 
disparate fields are cooperating to explore and develop this new field. Work that illustrates the potential 
of this new field was reported at the recent IEEE Conference on "Neural Information Systems - Natural 
and Synthetic " held in Denver in November, 1987. In the remainder of this Part, the Panel reviews some 
of this new work, which has led to greater theoretical understanding and design principles for complex 
systems. 



3.   TASKS NEURAL NETWORKS PERFORM AND REPRESENTATIVE MODELS 

3.1 INTRODUCTION 

Neural network models can perform a wide variety of tasks useful for speech, vision, and robotics 
problems. The primary tasks performed include: 

• Pattern classification, 

• Self-organization or clustering, 

• Associative memory storage and access, 

• Vision and speech preprocessing, 

• Computational tasks such as those required to solve combinatorial optimization 
problems, 

• Nonlinear input/output mapping such as is required in robotics control, 

• Sensory fusion of inputs from multiple sensors, and 

• Recognition of time-varying patterns as is required for speech recognition. 

More that 30 different models have been developed. Important models include the Hopfield network, 
single- and multi-layer perceptrons, the cerebellar model articulated controller (CMAC) network, the 
feature map network, Darwin HI, and the silicon retina chip. Many other important networks and multi- 
module systems are being explored. 

3.2 TASKS THAT NEURAL NETWORKS PERFORM 

The field of neural networks includes many different models designed to address a wide range of prob- 
lems in the primary application areas of speech, vision, and robotics. 

Two separate classes of models have been explored. Neurobiological models closely model some as- 
pect of biological brain function and/or animal or human behavior. Computational models perform some 
technically important function. Neurobiological models are judged by how well they summarize exist- 
ing neurobiological and psychophysical data and on the accuracy of predictions. Computational models 
are judged primarily by their potential impact and by their performance and implementation efficiency. 
The Neural Network Study and the efforts of the Adaptive Knowledge Processing Panel have focused on 
computational models due to their potential technical importance. 

A recent thorough review of neurobiological models can be found in [42], and the importance of these 
models is discussed in Chapter 14: Neurobiology and Neural Networks of this Part of the Neural Network 
Study Technical Report. 

II 



Researchers developing computational models tend to focus on one or more of the following common 
problem areas: 

• Designing neural network architectures to implement important conventional archi- 
tectures. 

• Developing new highly parallel neural network algorithms. 

• Analyzing algorithms using simulation and theory. 

• Implementing algorithms in hardware. 

Most researchers focus on neural networks that perform those seven major tasks illustrated graphically 
in Figure 3-1. These tasks include: 

SENSORY DATA PREPROCESSING 
(Vision. Speech) 

CLASSIFICATION 

'CAT- MOTION, 
COLOR, 
DEPTH 

SELF-ORGANIZATION/ 
CATEGORY FORMATION 

NONLINEAR MAPPING 

ASSOCIATIVE MEMORIES 

*> XLz 

ROBOTIC CONTROL 

MULTI-SENSE AUTOMATA 

EYE-HAND 
COORDINATION 

01 

e2 

in n 
r« 

Figure 3-1.    Seven Tasks that Neural Networks Can Perform. 

• Classification. Classifiers are trained with supervision using labeled training data 
to partition input patterns into a pre-specified number of groups or classes. These 
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could represent different words for a speech recognizer or different objects for an 
visual image classifier. Inputs to a classifier may be binary- or continuous-valued. 

• Self-organization/Category Formation. Self-organizing networks partition input 
examples into groups or clusters using unlabeled training data. This type of clus- 
tering or vector quantization is an efficient technique for reducing information that 
must be processed at higher levels with little loss in performance [55]. It also makes 
good use of the large amount of unlabeled training data that is typically available in 
speech and vision problems. The number of clusters formed many be pre-specified 
or determined from the examples. 

• Associative Memory. An associative, or content-addressable memory provides a 
complete memory item from a key consisting of a partial or corrupted version of 
the memory. For example, it might return a complete article citation from only the 
author's name or a complete image of a face from only the bottom half. 

• Sensory Data Processing. An enormous amount of realtime preprocessing is per- 
formed in the peripheral sensory vision and hearing centers. Neural networks can 
perform this function in real time using massive parallelism. 

• Computational Problems. Custom neural network architectures can be designed 
to solve specific computation problems, such as the traveling salesman problem and 
other constrained optimization problems, using nonlinear analog computation. 

• Nonlinear Mapping. Many neural networks can map a vector of analog inputs into 
an output vector using a nonlinear mapping function which can be learned from 
training data. These types of mappings are useful in many areas, including robot 
control and nonlinear signal processing. 

• Multi-sensor Automata. A number of complex, multi-module neural network au- 
tomata have been built with visual input and a robot arm to manipulate objects in 
an environment. These automata demonstrate how an eye or camera can learn to 
scan a scene using self-supervision, how control of a multi-jointed arm and hand 
can then be learned using self-supervision, and then how the eye and hand can be 
coordinated to perform simple tasks. These automata also demonstrate how inputs 
from multiple sensors can be fused to provide classification performance better than 
could be achieved with a single sensor. 

3.3    ILLUSTRATIVE NEURAL NETWORK MODELS 

Past work has lead to many different networks which address the above problems and computational 
tasks. Some of these networks are presented in Figures 3-2 and 3-3. Figure 3-2 emphasizes the biolog- 
ical inspiration and types of training supported by the networks and Figure 3-3 emphasizes the tasks the 
networks perform. 

13 
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Figure 3-2.    Some Neural Network Models Arranged by Degree of Biological Inspiration 
and the Type of Learning the Network Supports. 
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Networks in Figure 3-2 are positioned vertically according to the type of adaptation used during training 
and horizontally according to the relationship between the network and biological nervous systems. 

Networks in the lower third of Figure 3-2 use fixed weights and are not adapted during use. Networks 
in the middle third use supervised training, and networks in the upper third use unsupervised training or 
are self-supervised. 

Networks in the left of Figure 3-2 are computational models with little connection to biological networks 
other than fine-grain parallelism. Networks in the middle have architectures modeled after early hearing 
and vision areas, and networks toward the right are attempts to model higher cortical areas. Since present 
knowledge of cortical function is minimal, these rightmost networks are only rough guesses that remain 
to be verified. 

More detail on six important networks from Figure 3-2 is provided in Table 3-1. 

Network Function Inter- Adapt Type of Biological 
Connects Learning Inspiration 

Hopfield Network CAM, Energy Feedback, Yes Supervised Parallel 
Minimization Full Processing 

Multi-Layer Classification, Feed- Yes Supervised Parallel 
Perceptron Nonlinear forward, Processing 
(Back Mapping Full 
Propagation) 
CMAC Robotics, Feed- Yes Supervised Cerebellum 

Nonlinear forward, Model 
Mapping Full 

Feature Map Speech, Feed- Yes Un- Cortical 
Vector forward, Supervised Maps 
Quantization Full 

Darwin III Eye-Hand Complex Yes Self- Neuronal 
Coordination Supervised Groups 
Automaton 

Retina VLSI Vision Grid, No None Retina 
Chip Front End Local 

Table 3-1. 

Six Representative Neural Network Models 

Networks in the lower third of Figure 3-2 are used for early vision processing (Markov random field, 
BCS, retina chip) and for speech preprocessing (cochlea chip). The Markov random field network [75, 
140,207] represents a neural network architecture for an algorithm useful for early vision processing. The 
BCS, or boundary contour system [92], is a new neural network algorithm that forms boundaries used for 
early vision. The retina chip [184] and cochlea chip [183] are analog VLSI integrated circuits modeled 
after the retina and cochlea. The retina chip includes photodetectors with a logarithmic output and a wide 
dynamic range, circuitry to average inputs locally in space, and circuitry to enhance temporal changes 

16 



in contrast. The size of the initial retina chip is small (48-by-48 pixels) and it requires primarily local 
connections as shown in Table 3-1. It includes roughly 100,000 transistors, and has been demonstrated 
using live inputs. The retina and cochlea chips are good examples of the potential of integrating sensors 
and parallel neural processing in a compact package. 

Networks in the middle third of Figure 3-2 are trained with supervision. Hopfield introduced many 
current researchers to the field of neural networks through his work with a recurrent network commonly 
known as the Hopfield network. This is a fully-connected iterative network, as shown in Table 3-1, which 
can be used as a content-addressable memory [ 109,111 ] or to solve combinatorial optimization problems 
such as the traveling salesman problem [112,258]. 

The multi-layer perceptron trained with a new algorithm called backpropagation [225] also introduced 
many researchers to the field of neural networks. It has been used successfully for many difficult problems, 
including forming text to phoneme rules [234], as a classifier in speech and vision problems [225,267,114, 
159], to classify sonar targets [82], and to form nonlinear mappings useful in nonlinear signal processing 
[151] and robotics [244]. As shown in Table 3-1, a multi-layer perceptron is a layered feedforward network 
where weights are adjusted with supervision to provide the desired output during training. 

The Viterbi network [158] is a neural network architecture which implements a successful temporal de- 
coding algorithm used for speech recognition using nonlinear analog processing. The reduced Couloumb 
energy (RCE) classifier [216,231,217] differs from the other classifiers in Figure 3-2 in that extra nodes 
are added when an error occurs due to the presentation of a novel input far from inputs which have already 
been seen. This allows rapid single-trial learning and the ability form complex decision regions rapidly. 
The MarrlAlbus cerebellum model [5,171], called the CM AC model in Table 3-1, was originally a model 
of the cerebellum. This is a part of biological brains that is required to coordinate fine motor movements. 
The CMAC model forms complex nonlinear maps adaptively and has been use,d in a number of robotic 
applications [5,187,125]. 

The Man neocortex model [ 170] is an example of an attempt to determine the function of cell layers 
in the neocortex, as is the Kurogi spatiotemporal pattern recognition model [150]. Kurogi's model is 
unique among high-level models in that it is one of the few to model internal neuron dynamics and specify 
how nerve action potentials are generated and processed on a spike-by-spike basis. Most other models 
include variables that represent the average cell firing rate. This is a neurobiological model which makes 
predictions whose details can be tested by neurobiologists. 

The upper third of Figure 3-2 includes models that are trained without supervision or with self-supervision. 
The three left-most networks vector-quantize the inputs and form clusters. Competitive learning net- 
works [227] form internal clusters from binary inputs while Kohonen's feature map forms clusters from 
continuous-valued inputs. Both networks form clusters using a fixed number of nodes and a sequential 
algorithm similar in purpose to the conventional k-means clustering algorithm [55]. The feature map al- 
gorithm is unique in that nodes representing clusters become arranged in a two-dimensional spatial grid 
or map where nearby nodes respond to stimuli with similar characteristics. The adaptive resonance the- 
ory (ART) clustering algorithm [32,31] forms a new cluster whenever an input is too far from an already 
existing cluster. 

The synoptic triad network [48] is the only network in Figure 3-2 other than the Viterbi network that can 
recognize temporal pattern sequences. It self-organizes to form pattern sequence detectors that could be 
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used in speech recognition applications or other applications, including vision, involving recognition of 
temporal patterns. The neocognitron [72] is a multi-layer image classifier that can recognize handwritten 
characters and provides translation invariance. Feature detectors in each layer are created using compet- 
itive learning techniques. The right-most model, Darwin III [57,215] is a complex simulated automaton 
that learns to follow a moving target and touch the target with a multi-joined arm. It is the most recent 
instantiation of a developing theory of brain function called Neural Darwinism [57]. 

3.4    IMPORTANT TRAINING AND PERFORMANCE ISSUES 

The chapters which follow review in detail the neural network models mentioned above, as well as 
others, using the taxonomy from Figures 3-1 and 3-3. Reviews of single- and multi-layer perceptrons 
(Chapter 4), associative memories (Chapter 5), classifiers (Chapter 6), and recurrent networks (Chapter 
7) are followed by chapters dedicated to the application areas of vision (Chapter 8), speech (Chapter 9), 
and robotics (Chapter 10). 

These chapters are not meant to be a thorough historical treatment. They are, rather, meant to be an 
overview that supplements reviews available in [ 11,67,90,103,157,226,235]. This review emphasizes the 
fundamental theoretical issues addressed by each network. These include: 

• Capability. What tasks can this network perform? Is there a rich enough data rep- 
resentation available to represent a solution to the problem the network must solve? 
Does the network have the computational power to solve the problem? 

• Credit Assignment. Given an existing set of variable weights, how is credit as- 
signed to each weight during training for a correct or incorrect response? 

• Training Issues. 

1. How much training data is required for a given level of per- 
formance? 

2. How long does it take during training until internal weights 
converge to final values? 

3. How does training time change as the problem is scaled up 
in size? Complexity analysis determines whether this time 
grows as a polynomial or exponentially in the number of in- 
puts or nodes. 

4. How well does a classifier generalize? Given a limited set of 
training data, how well does the network perform on other test 
data not seen during training? 

5. Can new items, classes, or behaviors be added without dis- 
rupting current performance? 

6. Is the network response invariant to irrelevant variability in 
the input? How is this invariance obtained? 

IX 



7. How is training time affected by internal data representations? 

• Performance/Operation Issues. 

1. How long does it take until the output settles and reaches the 
desired solution? 

2. How accurate is the solution? 

3. How is the network designed, and how does performance and 
capacity vary with network size? 

4. How sensitive is the solution to component inaccuracies? 

5. How fault-tolerant is the network when components are dam- 
aged? 

6. How easy is the network to implement with different types of 
hardware? 

7. Is network operation stable? Do iterations in networks with 
recurrent connections lead to a stable state where node outputs 
are constant, or do node outputs vary continuously? 

8. How is performance affected by internal data representations? 
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4.   SINGLE- AND MULTI-LAYER PERCEPTRONS 

4.1 INTRODUCTION 

Single- and multi-layer perceptrons are the simplest types of feedforward neural network models. Single- 
layer perceptrons can be trained using the perceptron convergence procedure or the LMS algorithm and 
can be used as classifiers and for adaptive signal processing. They can, however, only form simple half- 
plane decision regions. A three-layer perceptron can form any decision region region and can approximate 
any desired nonlinear input/output mapping. Such networks can be trained with a new algorithm called 
backpropagation. These networks have been successfully used in many classification problems as well 
as prediction and robotics problems where nonlinear mappings are required. They can form the decision 
region required by any classifier and could thus replace any conventional classifier. 

4.2 SINGLE-LAYER PERCEPTRONS 

Single-layer perceptrons were first introduced by Rosenblatt [222]. A single-layer perceptron can be 
used to classify a continuous-valued or binary-valued input vector into one of two classes. One such 
network is illustrated in the left of Figure 4-1. A single node computes a weighted sum of the input 
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Figure 4-1.    A Single-layer Perceptron and Half-plane Decision Regions Formed During 
Training Using the Perceptron Convergence Procedure. 

elements, subtracts a threshold, and passes the result through a binary-valued nonlinearity denoted //,(). 
Each of the two possible outputs corresponds to a different classification response. The perceptron forms 
two decision regions separated by a hyperplane. 

This hyperplane is a line as shown in the plot on the right of Figure 4-1 when there are only two inputs. 
This plot illustrates how weights change when a supervised error-correction training algorithm called the 

21 



perceptron convergence procedure [55,222] is used to adapt weights. In this example, there are two input 
classes denoted by crosses and circles. The decision boundary changed on trials 2, 4, and 80 after errors 
occurred. 

Rosenblatt and others [188,194] focused on the capabilities of perceptrons when input patterns (the vec- 
tor of inputs) are binary. In this case, each input pattern is a vertex on a hypercube where the hypercube has 
as many dimensions as there are inputs. If N represents the number of inputs, then there are 2 N possible 
input patterns in this case. Rosenblatt proved that if patterns in two input classes could be separated by a 
perceptron, then the perceptron convergence procedure would converge and find a solution. Such sets of 
patterns are called linearly separable. Further work demonstrated that a perceptron with M inputs could 
form any desired grouping or dichotomy of fewer than 2 M random input patterns with high probability 
[194]. Perceptrons are thus often said to have a capacity of 2 M patterns because they can almost always 
dichotomize any two classes made by selecting from 2 M binary patterns. 

Other early work in an area called threshold logic explored the potential application of perceptrons as 
logic gates in computers [117,154,193]. Such gates can realize Boolean AND and OR functions and other 
linearly-separable functions, including "at least X of M." This work led to procedures to determine those 
Boolean functions which are linearly separable for small numbers of inputs. It also led to network design 
procedures to realize desired Boolean functions with networks of perceptrons and a better understanding 
of the capabilities of perceptrons. Design procedures for feedforward and feedback networks of threshold 
logic gates were developed, culminating in the construction of some small computers [117]. This work 
ended with the availability of inexpensive logic gates using simpler Boolean AND, OR, NAND, and NOR 
logic functions. 

Minsky and Papert carefully analyzed the capabilities of perceptrons in a book called Perceptrons that 
was recently revised and reprinted [188]. They demonstrated that perceptrons could not distinguish con- 
nected from unconnected figures on an input array of binary pixels. They also demonstrated that percep- 
trons couldn't compute an exclusive OR Boolean function because this function is not linearly separable. 
A single-layer perceptron and decision regions for an exclusive OR function are illustrated in the upper 
row of Figure 4-2. The smooth closed contours labeled A and B in this figure are the input distributions for 
the two classes for a network with two inputs. The shaded areas are the decision regions created by single- 
and multi-layer perceptron classifiers. Distributions for the two classes for the exclusive OR problem on 
the left are disjoint and cannot be separated by a single straight line. One possible decision region for 
class A which a perceptron might create is illustrated by the shaded region in the first row of Figure 4-2. 
A more serious limitation of single-layer perceptrons noted by Rosenblatt [222] is that multiple simulta- 
neous inputs on an input pixel array (for example, a simultaneous circle and square) lead to ambiguous 
responses. A good review of Rosenblatt's book and Minsky and Papert's work can be found in [169]. 

Only recently have complexity theory results been obtained which set bounds on the time required 
to train perceptrons to learn various linearly-separable Boolean mappings [96,97]. For example, it was 
proven that the time to learn an arbitrary linearly-separable function grows exponentially with the number 
of inputs. This time, t, is bounded by 

2M <t< MM, 

where M is the number of inputs to the perceptron. It was also proven, however, that the time to leam 
the "at least X of M" function grows only polynomially with the number of inputs. The time to learn this 
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function is bounded by: 
t < M3. 

Finally, the time to learn the "at least 1 of M" function, which is a logical OR, was proven to grow even 
slower with the number of inputs: 

t<M2. 

In empirical tests, this time was found to grow linearly with the number of inputs. These results demon- 
strate the utility of forming input data representations such that the Boolean function to be learned is an 
OR function that scales very well in large networks. They suggest hierarchical networks where data rep- 
resentations in lower layers require only an OR function to be computed in a final layer with adjustable 
weights. Such networks have been suggested by many researchers [96,114,264]. 

A special version of the perceptron convergence procedure designed to learn an OR function (called a 
disjunctive Boolean function) was recently developed by Littlestone [162]. He found that the number of 
errors that occur when learning an OR function using this algorithm grows very slowly with the number 
of inputs. The number errors for a perceptron with M inputs is bounded by 2M(log2( M) + 1) + 1. 

Connection weights and the threshold in a perceptron can also be adapted using the LMS algorithm 
[55,275]. This algorithm is used primarily when inputs take on continuous instead of binary values. The 
LMS algorithm uses a semilinear nonlinearity and adapts weights after every trial based on the difference 
between the actual and desired output. It is more appropriate when classes are not linearly separable. The 
LMS algorithm is one of the most technologically successful neural network algorithms. It resulted from 
early work of Widrow and Hoff on Adaline networks [275] and is currently used extensively in telephone 
echo cancelers and high-speed modems [276]. Work on adaptive algorithms such as the LMS algorithm 
led to a new branch of engineering called Adaptive Signal Processing. Much of this work is summarized 
in [276]. For example, it was proven that this algorithm converges when the gain term (a multiplicative 
factor on the change in weights after each trial) is in a given range. Relationships between convergence 
time, the RMS error after convergence, and the statistics of the input patterns are also available [276]. 

4.3    MULTI-LAYER PERCEPTRONS AND BACKPROPAGATION 

A more complex structure than the single-layer perceptron is required when classes cannot be separated 
by a hyperplane. Two such situations are presented in the upper row of Figure 4-2. Distributions for the 
two classes for the exclusive OR problem on the left are disjoint and cannot be separated by a single straight 
line, as noted above. Input distributions for the second problem shown in this figure are meshed and also 
cannot be separated by a single straight line. Situations similar to these may occur when parameters such 
as formant frequencies are used for speech recognition. 

Multi-layer perceptrons are feedforward networks with one or more layers of nodes between the in- 
put and output nodes. These additional layers contain hidden nodes that are not directly connected to 
both input and output nodes. Two- and three-layer perceptrons are shown in the middle and bottom rows 
of Figure 4-2. Multi-layer perceptrons overcome many limitations of single-layer perceptrons, but were 
generally not used in the past because effective training algorithms were not available. This has recently 
changed with the development of a new training algorithm called backpropagation. This algorithm was 
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reported as early as 1974 [274] and rediscovered by a number of workers [195,225]. This algorithm is a 
generalization of the LMS algorithm that uses a gradient search technique. It is named for the procedure 
used to pass the error signal back from the output to lower layers. Although it cannot be proven that the 
backpropagation algorithm converges, it has been shown to be successful for many problems of interest 
[225]. Multi-layer perceptrons trained with backpropagation have been used successfully in such diverse 
applications as forming letter-to-phoneme rules [234], classifying spoken vowels and digits [114,159], 
identifying phonemes in a speech recognizer [267], and for nonlinear signal processing [151]. Figure 4-3 
illustrates how a circular decision region can be formed after 200 trials of training by a two-layer percep- 
tron trained with backpropagation. 
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Figure 4-3.    A Circular Decision Region (Shaded Area) for Class A Formed by a Two-layer 
Perceptron After 200 Trials Using Backpropagation. 

The utility of the backpropagation algorithm stems from the surprising computational power of three- 
layer perceptrons with two hidden layers. These networks can form any desired decision region [29,157], 
as shown in the bottom of Figure 4-2. They can thus emulate any traditional deterministic classifier by 
producing the decision region required by that classifier. Kolmogorov also proved a theorem described in 
[163] which, in effect, demonstrates that a three-layer network can form any continuous nonlinear function 
of the inputs. This proof requires carefully specified nonlinearities with wide dynamic ranges. More recent 
theoretical work has demonstrated that continuous nonlinear functions can be approximated to arbitrary 
precision using three-layer perceptrons with sigmoidal nonlinearities [44]. A three-layer perceptron can 
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thus create any continuous likelihood function required in a classifier, given enough nodes. Empirical 
results [151] also demonstrate that many useful nonlinear mappings can be realized with backpropagation. 

One difficulty with backpropagation training is that many presentations of the training data are fre- 
quently required for convergence when decision regions or desired mappings are complex. This is im- 
portant during training but does not affect response time during use. It currently sets a practical limit to 
the size of networks that can be trained but is not a severe problem for single-layer networks or multiple- 
layer networks with restricted connectivity. Recent theoretical work [122] has investigated the difficulty 
of training multi-layer perceptrons to learn arbitrary Boolean mappings. It was found that this problem is 
NP-complete and thus grows exponentially with the size of the network. This is recent work and results 
for specific classes of Boolean functions and for networks with restricted connectivity patterns remain to 
be obtained. 

A number of algorithms other than backpropagation have been proposed for training multi-layer per- 
ceptrons. Some involve training initial layers using some form of competitive learning [96,114,264] or 
using fixed weights in initial layers [5,114]. The output layer then is trained to learn an OR function, which 
scales well in large networks. Rapid learning of difficult tasks has been demonstrated with these networks 
[96,114]. Another algorithm, called the AR-P or Associative Reward Penalty algorithm [20], can also be 
used to train multi-layer perceptrons. It uses simple binary correct/incorrect feedback and does not require 
a continuous error signal but typically converges much more slowly than backpropagation. 

One interesting problem to which backpropagation has been applied is predicting future sample values 
in time series [151]. Here it was demonstrated that a network could be trained to predict the following 
samples in a chaotic sequence better than linear or low-order polynomial predictive techniques. Theo- 
retical results and a new training procedure for problems that involve prediction are presented in [252]. 
This paper argues that one can learn with greater computational and statistical efficiency by taking advan- 
tage of the temporal structure of prediction problems. Both formal and simulation results are presented in 
support of this claim. New methods are closely related to older techniques used to solve the credit assign- 
ment problem [228,107]. This work sheds light on and provides a theoretical foundation for these earlier 
methods. It also shows that such methods are much more broadly applicable than previously thought. 
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5.   ASSOCIATIVE MEMORIES 

5.1 INTRODUCTION 

A content-addressable memory, or associative memory, allows retrieval of a complete stored pattern 
from a noisy or incomplete input pattern key. Historically, associative memory modeling has been a 
major focus of neural network research. The most extensively studied associative memory models are 
based on storing and retrieving binary patterns. These models typically make use of the Hamming metric, 
and their connections take on only integer values; this makes them suitable for practical implementation. 
These models are adapted either by specifying weights a priori or incrementally by some simple storage 
or programming rule. 

From the mid-1950s to the mid-1970s, a wide variety of associative memory models were studied. Some 
of this early work is described in [11,42,143]. Widespread interest in such models seems to have waned by 
1975. Although many application areas were explored, these early memory models had little technological 
impact. The available technology favored the use of digital random access memories (RAMs) and read- 
only memories (ROMs) in conjunction with conventional computers. Thus, these models did not have a 
lasting impact beyond the world of academics and were significant primarily because they attempted to 
explain biological memory in simple mathematical terms. 

Hopfield rekindled widespread interest in associative memory when he proposed his 1982 energy min- 
imization model based on the outer product storage rule [110]. While outer product memories had been 
studied extensively, Hopfield's version captured attention because of its timeliness from a technological 
standpoint and the theoretical appeal of energy minimization. 

A large number of researchers have exhaustively studied the Hopfield model, its variations, and its 
generalizations [2,7,51,128,179,78,33,147]. A general consensus has developed that the outer product 
model is extremely interesting but that it suffers from limited capacity and inefficient use of hardware. 
Since 1982, a number of new memory models have been proposed, and some old models have been 
rediscovered and improved upon. Noteworthy among these are the unary or Hamming network model 
[249,250,259,22,53,160], and the sparsely-distributed models [22,124]. These models do not suffer from 
the capacity and performance limitations of the Hopfield model. 

5.2 THE UNARY OR HAMMING NETWORK 

This network was first described by Steinbuch [249,250] in 1961 and Taylor [259] in 1964. The idea 
was independently re-proposed in 1986 as a practical alternative to the Hopfield model by Baum, Moody, 
and Wilczek [22]; Domany and Orland [53]; and Lippmann, Gold, and Malpass [160]. 

Figure 5-1 shows the network diagram for a general feedforward associative memory. The unary model 
is a special case of this architecture. There are three sets of units: N input units, G internal units, and 
N' output units. The input units have discrete activation values (±1,0), where 0 corresponds to the 
"don't know" or "don't care" state. The output units have discrete activation values ± 1, while the internal 
units have continuous activation values in the range (0,1). The internal units have inhibitory lateral 
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Figure 5-1.    General Feedforward Associative Memory. 

connections which implement a winner-take-all circuit. The network is called the unary model because 
only one internal unit is active once a match is made. This distinguishes the model from distributed models 
in which a number of internal units are active when a match is made. 

Each of the G internal units is associated with a pair of input and output memory registers. Each memory 
register is implemented as a vector of ± 1 resistive connections. Input vectors have N bits, while output 
vectors have N' bits. The memory capacity M, defined as the number of input/output memory pairs which 
can be stored, is limited by M < G. Note that M can be very much greater than both N and N'. 

The associative memory function is computed by the network as follows: 

1. A partial or noisy input key pattern is imposed as an activation pattern V, on the N 
input units. Internal units compute the dot product between the inputs and weight 
vectors in parallel. The result for each node is N minus twice the Hamming distance 
between the input key vector and the stored weight vector. 

2. The node with the largest input current corresponds to the best match in Hamming 
space between the input key vector and the stored vectors. The selection of the best 
match is accomplished by an analog winner-take-all circuit. 

3. Once the internal units have converged to determine the winner, only one of them 
will be active. The sole "on" unit transmits a pattern of activity to the output units, 
completing the associative recall task. 
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5.3   THE HOPFIELD MODEL 

The Hopfield outer product memory, shown in Figure 5-2, has only one layer of units. These serve 
triple duty as input, output, and processing units. The units are globally interconnected and every unit is 
thus connected to every other unit. The dynamics of the discrete version of the model are given by matrix 
multiplication and thresholding: 

Vi(t+ l)=sign(Y^TljVj(t)). 
/-i 

(5.1) 

Here V, = ± 1 is the state of each of N units, and !T,; is the matrix of connections. The N units are updated 
asynchronously at random times. Hopfield showed that when the matrix Ty is symmetric, the dynamics 
of equation 5.1 minimize a bounded energy function. A weight assignment rule, called the outer product 
storage prescription, provides such a symmetric T%j. 

The processes of retrieving information from a Hopfield memory begins by putting the network into an 
initial state which represents the input key pattern. The network then iterates from this initial state until 
it converges to a final stable state. Ideally, this final stable state would be the stored memory which is the 
closest in Hamming sense to the initial state key pattern. 

Performance of the Hopfield Model. Much has been written about the dynamics, capacity and per- 
formance of this model and its variations. Only key points are summarized here. 

The maximum number of memories M which can be stored in a Hopfield memory while still obtaining 
perfect recall is [2,179] 

M < N/(4\ogN). 

If more memories are stored, then the stable states of the network begin to differ significantly from the 
stored words. If an error rate of 5% can be tolerated, then the capacity is limited by [110,7] 

M <0.\4N. (5.2) 

These numbers should be contrasted with the capacity of the unary memory, which can have M ^$> N 
with no errors in the final state. 
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The hardware efficiency of the Hopfield model also is poor. Storage of M memories with N bits of 
information each requires N2 connections each with 2 M + 1 possible values. The hardware efficiency e, 
defined as the number of information bits per connection state, is therefore: 

- M 1 
6~ N(2M+ 1) < 2JV" 

This compares with t = 0(1) for the unary model. 

The dynamics of the Hopfield model are complex. The basins of attraction for the stored memories tend 
to be irregular[128] and fill only a fraction of the volume of Hamming space. The remaining volume is 
occupied by the basins of spurious attractors which were not intended to represent actual memories [7]. 
The number of spurious attractors increases as the the number of memories stored reaches the capacity 
limit given in equation 5.2. Beyond this limit, the network "forgets" everything and no retrieval is possible. 

A number of variations on the Hopfield memory have been proposed. These include the pseudo-inverse 
model [ 144,51 ], higher-order correlation models, and various generalizations including the bi-directional 
associative memory (BAM) [147]. None of these provides the hardware efficiency of the unary model. 

5.4   SPARSELY-DISTRIBUTED FEEDFORWARD MODELS 

Two sparsely-distributed feedforward models, the Kanerva [124] and BMW [22] models, are worthy of 
note. These models are sparsely-distributed in the sense that each memory is stored in a small fraction of all 
physical locations, and each location contains information about only a small fraction of all the memories 
stored. This is in contrast to the outer product and correlation matrix models in which all memories are 
stored at all physical locations. 

The sparsely-distributed memories are analogous to the Unary memory in that they have three layers 
of units and store memory vectors in two layers of registers. Unlike the unary memory, each memory is 
stored in a set of registers and each register contains a superposition of stored memories. 

Like the unary memory, the capacities of the sparsely-distributed models are not limited by the word 
sizes N, but rather by the number in internal units G. The capacity constraint for the BMW model is [22] 

G 
02 M<-2-, (5.3) 

where 0 is the signal-to-noise ratio required at the output layer. The capacity constraint of the Kanerva 
model is approximately [129] 

M < OAG 

beyond which spurious states - that is, unwanted states - begin to appear. 

Sparsely-distributed memories fall short of the unary memory in terms of hardware efficiency. This 
is caused by the necessity of integer-valued connection weights rather than binary ± 1 connections and 
because superposed storage and consequent memory interference causes a substantial loss in capacity. The 
unary model is more hardware-efficient, even if it is replicated several times to achieve hardware fault- 
tolerance. The most appealing characteristic of the sparsely-distributed models, especially the Kanerva 
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model, is that they are the most biologically plausible of all the models yet proposed. Both Kanerva and 
Baum et al. have pointed out similarities between their models and the Marr [ 172] and Albus [6] models 
of the cerebellum. 
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6.   CLASSIFICATION AND CLUSTERING MODELS 

6.1 INTRODUCTION 

There has been a continuing interest in neural network classification and clustering algorithms because 
of their ability to provide realtime response through fine-grain parallelism and because of the importance 
of these tasks. As noted in [214], classification of external objects based on sensory inputs is an essential 
requirement for learning, logic, and other mental functions. 

Classification of static patterns is an area where neural network models have been very successful. 
Work has led to architectures which can be used to implement all important conventional classifiers using 
fine-grain parallelism [21,114,142,157,194]. In addition, as mentioned above, multi-layer perceptrons 
can form those decision regions required by any classifier and can thus simulate any traditional classifier. 
Work has also led to the development of new hierarchical classification algorithms which extend the field 
of pattern classification by prov iding adaptation and rapid learning using parallel architectures [ 31,96,114, 
142,217,231,264]. This chapter reviews work on classifiers focusing on classification of static patterns. 
Work on classifying time-varying patterns is reviewed in the chapter on speech recognition. A detailed 
review of neural network classifiers is available in [157] and recent comparisons of classifiers are available 
in [96,114]. 

6.2 A TAXONOMY OF CLASSIFIERS 

A taxonomy of important neural network models that can be used to classify and cluster static patterns 
is presented in Figure 6-1. For clarity, this figure omits higher-order models and the ART II model [31], 
which is an extension of ART I for continuous-valued inputs. 

The taxonomy in Figure 6-1 is first divided between networks with binary- and continuous-valued in- 
puts. Below this, networks are divided between those trained with and without supervision. Networks 
trained with supervision include perceptrons and multi-layer perceptrons described above. These net- 
works are provided with labels that specify the correct class for new input patterns during training. Most 
traditional statistical classifiers, such as Gaussian classifiers [55], are trained with supervision using la- 
beled training data. Networks trained without supervision, such as the Kohonen's feature map forming 
networks [143,142], are used as vector quantizers or to form clusters. No information concerning the 
correct class is provided to these networks during training. A further difference between networks, not 
indicated in Figure 6-1, is the connectivity patterns of the networks. All models in this taxonomy - except 
the Hopfield, ART, and DARWIN II networks - use predominately feedforward connections. 

The algorithms listed at the bottom of Figure 6-1 are those classical algorithms which are most similar to 
or perform the same function as the corresponding neural network. In some cases, a network implements 
a classical algorithm exactly. For example, the Hamming or unary network described above is a neural 
network implementation of the optimum classifier for binary patterns corrupted by random noise [73]. 
It can also be shown that the perceptron structure performs those calculations required by a Gaussian 
classifier [55] when weights and thresholds are selected appropriately. 
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In some cases, the neural network algorithms represent new classification algorithms that extend the 
theory of pattern classification. For example, perceptrons trained with the perceptron convergence pro- 
cedure [222] behave differently than Gaussian classifiers; this led to the theoretical work described pre- 
viously. The RCE classifier [217,231] is a unique extension to k-nearest neighbor classifiers that limits 
memory requirements and can be implemented using adaptive fine-grain parallelism. Kohonen's feature 
map network [143] performs an adaptive version of the k-means training algorithm in a manner that forms 
topographic maps similar to those that occur in the brain. The feature map classifier [114] combines an in- 
put layer organized using unsupervised training and the feature map algorithm with an output layer trained 
using perceptron-like techniques. Hierarchical networks such as this can form complex decision regions 
rapidly [96,114]. 

6.3    SUPERVISED CLASSIFIERS 

The single- and multi-layer perceptron networks, the Hopfield network, and the Hamming network 
classifiers in Figure 6-1 have already been discussed in detail. The remaining supervised classifiers include 
the RCE classifier, the feature map classifier, and high-order networks. As mentioned above, the RCE, or 
reduced Coulomb energy, classifier is an extension to k-nearest neighbor classifiers that is adaptive and 
limits memory requirements. It is similar to classifiers described in [21] and can form arbitrary decision 
regions using hyperspheres with adaptable radii and position as shown in Figure 6-2. This figure shows 
an RCE network on the left and decision regions formed by this network using hyperspheres on the right. 
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Figure 6-2.    A Reduced Couloumb Energy (RCE) Classifier and the Decision Region for 
Class A (Shaded Area) Formed by Five Prototype Nodes. 
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6.3.1    RCE CLASSIFIER 

The RCE classifier represents a unique approach to the problems of generalization and rapid single- 
trial learning. It limits the number of exemplars or nodes required, leads to a simple network realization, 
provides rapid single-trial learning, and eliminates the need to select a global maximum over many nodes 
when making a final classification decision. Theoretical analyses and experiments with this network [96, 
217,231] demonstrate that it can form complex decision regions rapidly and can solve the exclusive OR 
problem in very few trials. Hampson [96] provides bounds on learning for specific problems and notes 
that this network can learn a specific instance in only one trial, while a perceptron requires a number 
of trials on the order of the number of inputs. He also demonstrates by simulation that this network can 
learn Boolean problems, called the symmetry problem and the multiplexer problem, more than an order of 
magnitude faster than a multi-layer perceptron trained with backpropagation. The RCE classifier also can 
be implemented efficiently on serial machines and has been used extensively for classification problems. 

6.3.2   Feature Map Classifier 

The feature map classifier listed in Fig 6-1 is a hierarchical network that uses combined unsupervised 
and supervised learning. It is representative of a number of hierarchical classifiers that have recently been 
developed [96,264] and is similar in design to the counterpropagation network described in [100]. It is 
presented in Figure 6-3. 
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Figure 6-3. A Hierarchical Feature Map Classifier Which is Trained with Combined Super- 
visedAJnsupervised Training and the Decision Region for Class A (Shaded Region) Formed 
by this Classifier. 
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The lower stage in Figure 6-3 vector quantizes the input and is trained first using Kohonen's feature 
map algorithm with unsupervised training data. The second perceptron-like stage is then trained with su- 
pervision. This approach is useful when much unsupervised data is available, as in the areas of vision and 
speech, but little supervised training is provided. As noted above, the second layer can be trained rapidly 
because it is computing a simple OR function to form classes. This hierarchical structure thus greatly 
reduces the amount of supervised training required. A theoretical analysis of this type of combined super- 
vised/unsupervised training is available in [38). This analysis demonstrates that the amount of supervised 
training required for a given level of performance can often be greatly reduced when unsupervised train- 
ing is available. Similar results were obtained empirically by simulation in [114,96] and proven for some 
specific Boolean mappings in [264]. The feature map classifier can be be used to implement a k-nearest 
neighbor classifier when weights are adjusted appropriately. 

6.3.3    High-order Networks 

Normal neural networks include simple processing elements that operate on linear functions of input 
variables. High-order networks include more complex elements that operate on high-order products and 
powers of input variables as well as on linear terms [225,77]. These networks have a long history [55,188, 
194,205]. Single-layer perceptrons which use high-order neurons can learn polynomial mappings useful 
for classification by using an extension of the perceptron convergence procedure or the LMS algorithm 
for training. This can eliminate the need for multi-layer networks and provide extremely rapid learning 
for problems where it is known a priori that a polynomial mapping is appropriate. 

High-order networks can also provide excellent generalization by specializing the selection of high- 
order terms to match the specific problem. This specialization can provide geometric invariances for 
networks with inputs derived from a visual field. High-order networks can provide invariance to both a 
translation or change in scale of the input pattern. This invariance is pattern independent and is similar to 
the invariance provided by such pattern recognition feature operators as Fourier descriptors. In addition, 
the invariance is independent of the learning rule and the nonlinearity of the neuron. This invariance can 
be placed at any level of a multi-layer network, with only one layer of invariant high-order neurons; and 
all layers can then be trained with an algorithm such as backpropagation [225]. 

The complexity of high-order networks must be limited by a priori knowledge to restrict computation 
costs because the complexity of individual nodes grows exponentially with their order. Interconnections 
can be constrained by imposing invariances on the high-order terms and restricting the range of intercon- 
nections and the order. Scaling high-order networks is difficult, unless the number of high-order terms 
can be adequately constrained. Interest in high-order networks demonstrates their versatility in providing 
solutions to problems where the form of the input/output mapping required can be characterized a priori. 

6.3.4    GMDH Algorithms 

High-order networks and multi-layer perceptrons are related to a class of algorithms known as GMDH 
algorithms [63]. These algorithms, in essence, build a high-order network to solve modeling and classifi- 
cation problems. They are based on Kolmogorov's theorem, mentioned previously [163], which states that 
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any nonlinear function can be approximated by a multinomial. Given that a set of observations are noisy 
samples of a continuous phenomena, the modeler's job is to find the multinomial which "best"' describes 
the observations. The main problem is to determine the order of the multinomial and the input variables 
which bear a relationship to the output variables. GMDH algorithms represent a heuristic solution to this 
problem. 

They build a network of low order, usually multinomials of order two in two variables which, when fed 
forward using multiple layers, realize a multinomial of arbitrary degree. The procedure at any layer is to 
form products and linear terms from all possible pairs of outputs from from the previous layer. Weights 
to an output are formed using linear regression techniques to fit a quadratic to all pairs. Given n input 
variables, the number of quadratics generated is 2 n~' and the procedure is thus untenable without inter- 
vention. This is accomplished by applying a criterion after each layer has been added and tested which 
retains the "best" performers and drops the rest. Generally, the number of retained variables at the output 
decreases from layer to layer so that the procedure doesn't become unstable. More importantly, however, 
are the criteria employed to terminate the procedure and produce the model. Without them, the procedure 
would produce an exact fit to the data. These criteria take different forms. The most prominent criterion 
uses a cost function that includes a penalty term for each additional layer and another term equal to the 
mean squared error generated by the regression. The procedure stops when the next layer doesn't do any 
better than the last. At termination, the order of the multinomial and the important input variables will 
have been learned. 

The algorithm has been used for classification and modeling. It has performed well in applications 
including modeling of econometric time series data and missile guidance laws. As with other high-order 
networks, GMDH algorithms are most useful when the underlying phenomena are not well understood 
and a priori constraints can be applied. 

6.4    UNSUPERVISED CLASSIFIERS 

The ART network, Kohonen's self-organizing feature maps, and the Darwin II network in Figure 6-1 
cluster inputs using unsupervised training. 

6.4.1    ART 

ART, or adaptive resonance theory, networks [32,31] are complex nonlinear recurrent networks with 
feedback connections. These networks form a new cluster (adjust weights to and thus activate a new 
internal node) whenever an input pattern is sufficiently different from previously stored patterns. What 
constitutes 'sufficiently different' is determined by a global internal parameter called the vigilance param- 
eter which must be adjusted externally to provide the desired sensitivity to differences in input patterns. 
The underlying traditional algorithm used in these networks is called the leader clustering algorithm [98]. 
ART networks have one of the most involved and complex architectures of all the classifiers listed in Fig- 
ure 6-1. They have recently been included in a number of more complex multi-module neural network 
system designs [90]. 
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6.4.2 Self-organizing Feature Maps 

Kohonen [143] presented a sequential clustering algorithm included in Figure 6-1 which produces what 
he calls self-organizing feature maps similar to those sensory maps that are common in the neocortex. 
Maps are two-dimensional grids of nodes as shown in Figure 6-4. Each node represents a cluster center. 
Kohonen's algorithm insures that nodes which are spatially close in the grid respond best to input vectors 
that are close in a Euclidean sense. This algorithm is a sequential version of the k-means clustering 
algorithm [55] that does not require storage of all training tokens and uses a simple weight modification 
rule. 

Kohonen's algorithm creates a vector quantizer by adjusting weights from common input nodes to 
output nodes arranged in a two-dimensional grid. Figure 6-5 illustrates how connection weights to nodes 
in the grid vary over time to sample the space spanned by the input examples. In this case, the input 
examples were uniformly distributed over the area plotted. After training, an input will cause only that 
output node corresponding to the cluster center nearest to the input to have a "high" output. 

Kohonen [143] presents many examples and proofs related to this algorithm. He also demonstrates how 
the algorithm can be used in a speech recognizer as a vector quantizer [145] and how the algorithm can be 
modified to form decision regions similar to those formed by a traditional k-nearest neighbor classifiers 
[142]. This algorithm is a viable sequential vector quantizer when the number of clusters desired can be 
specified before use and the amount of training data is large relative to the number of clusters desired. It 
has been used for this purpose in the feature map classifier described above, in the counterpropagation 
network [100], and in a robotics application [218]. 

6.4.3 Darwin II 

The final unsupervised clustering algorithm in Figure 6-1 is a network called Darwin II [57,215]. This 
is the second in a series of simulations created to explore a brain theory being developed called "neural 
Darwinism" [57]. This theory differs from other neural network design procedures in its emphasis on the 
importance of selection to enhance the outputs of those neuronal groups or subnetworks which respond 
best to specific input stimuli. The theory assumes that a collection of neuronal groups, called a repertoire, 
is formed during embryogenesis. Groups in a repertoire respond best to overlapping but similar input pat- 
terns due to the randomness of neuronal growth. One or more groups in a repertoire will respond to every 
input pattern and response to important unexpected inputs is thus insured. Training involves competition 
between groups, which amplifies the responses of specific groups to specific stimuli and associates those 
groups with each other and with a specific appropriate response. 

Neural Darwinism is different from the common approach of designing a network topology and training 
it with supervision to provide a desired response. Instead, it assumes that there are, by design, many sub- 
networks. Only those with the desired response during training are selected. Important issues addressed 
by this approach include the need to respond to unexpected stimuli, the importance of interacting with the 
environment, and the need to generate biologically plausible models where the elemental units are small 
groups of neurons. Important issues this approach must address are how to both design and provide the 
large number of subnetworks required. 
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Figure 6-4. The Feature Map Network Uses an Architecture Made of Nodes Arranged in a 
Two-dimensional Grid (Top) and Requires Neighborhoods (Bottom) to be Defined Around 
Nodes. The neighborhoods shrink in size over time. 
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7. RECURRENT NETWORKS 

7.1 INTRODUCTION 

Neural network models with recurrent connections can perform complex time-dependent calculations. 
Many of these models do not include learning, but use fixed weights to perform some specific function. 
Hopfield and Tank demonstrated how such networks could be designed using the concept of computational 
energy to solve combinatorial optimization problems such as the traveling salesman problem. Others have 
demonstrated how a recurrent network called a "winner-take-all" network can select that node with a 
maximum value. 

One specific class of recurrent networks called cellular automata have been studied for theoretical 
reasons and also for their ability to simulate some types of complex physical phenomena such as fluid flow. 
A number of training algorithms for recurrent networks have been developed. The first used simulated 
annealing and was incorporated into a recurrent network with symmetric connections called a Boltzmann 
machine. 

Recently, backpropagation training has been generalized for application to recurrent networks. A num- 
ber of stability proofs have been derived for recurrent networks. The most general applies to a wide class 
of networks with symmetric connection weights. 

The study of recurrent networks needs to expand because such networks can perform important func- 
tions in complex systems, such as automatic gain control or energy normalization and selecting a maxi- 
mum. These functions are required for robust operation and to make decisions. 

7.2   COMPUTATIONAL ENERGY 

As noted in [42], Hopfield [109,112,258] was the first to explicitly use the concept of computational 
energy to both understand and design nonlinear neural networks. This concept was applied to recurrent 
networks with symmetrical feedback connections to tailor the final stable states of such networks to be 
solutions of specific problems. Hopfield and Tank [112,258] demonstrated how this concept could be 
used to design analog networks to solve many combinatorial optimization problems. These included the 
traveling salesman problem, linear programming problems, and a task assignment problem. Their work 
is an excellent illustration of the energy function design methodology and appears to produce networks 
that work well when the number of nodes is small. The effectiveness of the networks with large number 
of nodes, however, has not been demonstrated. Current results suggest that the networks may not scale 
well. It appears to be difficult to obtain good solutions when there are many variables in combinatorial 
optimization problems and there are thus many nodes [278]. Other neural network approaches to these 
problems are being explored, however, and these may scale better than current techniques. 

A recent important development for recurrent networks is a generalization of the backpropagation train- 
ing procedure [204]. Previous attempts to apply backpropagation to recurrent networks involved duplicat- 
ing the network at every time step to form a gradually unfolding feedforward network [225]. The newer 
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generalized training algorithm can be applied to networks with asymmetric connections and to networks 
with symmetric connections as studied by Hopfield and Tank. 

7.3 THE BOLTZMANN MACHINE 

Combinatorial optimization networks developed by Hopfield and Tank do not always find the best solu- 
tion in constrained optimization problems. They can, instead, get trapped in local minima of the network 
energy function. This problem can be alleviated by adding a stochastic aspect to the search performed 
as the network iterates using a technique called simulated annealing [130]. A network called the Boltz- 
mann machine [4,105] uses this strategy. The Boltzmann machine training algorithm solved the credit 
assignment problem for the special case of recurrent networks with symmetrical connections and was 
demonstrated to be able to learn a number of difficult Boolean mappings [4,105]. Although it is theoret- 
ically interesting, the use of simulated annealing causes training times in a Boltzmann machine to be too 
long for practical applications on current hardware. 

7.4 HIGH-ORDER NETWORKS 

As noted previously, high-order networks include complex computing elements that operate on high- 
order products and powers of input variables as well as on linear terms. Lyapanov functions can be 
constructed for recurrent high-order networks with symmetric connections to guarantee stability [152]. 
High-order networks can also include conjunctive connections and modifiers to perform some logical op- 
erations [17,66,104] and a high-order extension of the Boltzmann machine has also been developed [233]. 
High-order associative memories offer greater storage density and convergence times that are often faster 
by an order of magnitude than those designed using linear neurons [201 ]. 

7.5 CELLULAR AUTOMATA 

The field of cellular automata [280] shares with neural networks a common interest in the computational 
properties of systems composed of large numbers simple interacting elements. The main difference is that 
neural networks are more general and biologically motivated. Each node in a cellular automaton typically 
computes the identical input/output function, nodes are typically connected only to nearest neighbors, 
learning is not typically incorporated, and the overall system is typically synchronous and run by a global 
clock. The state or output of each node in a cellular automaton is discrete and typically takes on binary 
or no more than 20 output values. The output state of a node on one clock cycle depends on the previous 
states of neighbors and that node via a fixed update function that is not just a linear sum but can be any 
logical function. Since the update function is fixed and the same for all units in a cellular automaton, 
memory can only be held by the states of the units, rather than by connection weights. 

Interest in cellular automata has been mainly theoretic in the past. They can be shown to be equivalent to 
Turing machines; they can be self-replicating; and they are capable of forming complex patterns and thus 
exhibiting complex "behavior" given only a few simple rules and specific initial conditions [13,280,209, 
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266]. The well-known game of Life [209], for example, is a cellular automaton that can form complex 
visual patterns from specific initial conditions. Interest in cellular automata has recently been revived 
with the availability of high-speed computers and special-purpose hardware. Much recent work in this 
area focuses on determining the ability of cellular automata to perform calculations required to simulate 
physical phenomena such as certain types of fluid flow. 

Many neural network models share characteristics with cellular automata. The Trion model of cortical 
information processing [241] is one example of a hybrid that has characteristics of both cellular automata 
and neural networks. It is like a cellular automaton in that the state of each unit is discrete and ternary. 
Each unit represents a group of neurons, such as an orientation column in visual cortex, and the three 
states correspond to output above, at, or below the background firing rate (the possibility that a group 
of neurons could have three discrete states has been demonstrated in [279]). The update function in the 
Trion model depends on a weighted sum of the inputs, as in a neural network, although, like a cellular 
automaton, the inputs to each unit are restricted to a fixed spatial neighborhood defined relative to the unit, 
and the neighborhood weight matrix is the same for each unit initially. However, like a neural network, the 
weight matrix may change with time in accord with a synaptic rule, resulting in unit-dependent weights. 
The current state is computed from the weighted sum of the two previous time steps. Trion models with 
fewer than 10 units can produce thousands of temporally periodic firing patterns. These sophisticated 
oscillations are analogous to the stable states in a Hopfield memory. 

7.6 SELECTING OR ENHANCING THE MAXIMUM VALUE 

The need to select or enhance the node in a network with a maximum value occurs whenever a decision 
must be made in network. One network currently called a "winner-take-all," or "maxnet," is fully con- 
nected with symmetrical connections, except from a node to itself, and is used as a component of many 
networks [112,143,67,90]. This network was extensively analyzed by Grossberg [86,90]. He demon- 
strated that maximum values would be enhanced if nodal nonlinearities increased at a faster-than-linear 
rate. In some applications, strictly feedforward networks can be used as an alternative to pick a maximum 
value [157]. These feedforward networks require no recurrent connections and provide outputs rapidly 
and continuously. 

7.7 STABILITY 

Nonlinear neural networks with feedback connections have the potential of being unstable if designed 
incorrectly. Outputs of nodes in such networks might latch up to high or low values or vary continuously. 
A number of proofs have been developed to demonstrate that certain types of networks with feedback are 
globally stable. The most general proof has been developed by Cohen and Grossberg [36]. This proof 
demonstrates that a large class of networks with symmetric connections is globally stable. Grossberg has 
also developed a number of other recurrent subnetworks and explored the stability of these networks. This 
work is reviewed in [90]. 
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8.   VISION 

8.1    INTRODUCTION 

The primary goal of machine vision is to find the three-dimensional arrangement of objects and surfaces 
that produce an input two-dimensional array of intensity values. Compact implementations of accurate, 
realtime vision systems would find widespread use in many applications including: 

• Rapid input of handwritten and printed documents and other images into machines; 

• Visual surveillance; 

• Automatic target detection and tracking; 

• Assembly line monitoring and quality control; 

• Aids for the blind; 

• Visual inputs for automata; 

• High-fidelity, low bit-rate image storage and transmission; 

• Automatic analysis of medical diagnostic tests such as X-ray pictures, NMR images, 
and cell cultures; 

• Automatic analysis of satellite images; and 

• Security systems based on visual recognition. 

Unfortunately, current machine vision systems perform poorly when faced with simple vision tasks 
that a child or bird could perform. Although human beings tend to take vision capabilities for granted, 
it has proved to be a difficult task to duplicate simple visual recognition tasks with machines. Some of 
the problems of machine vision are caused by the enormous computational power required to process 
images (a typical high-quality image front end may produce 100 images every second with 10 6 pixels per 
image), by the multiplicity of cues (shape, color, texture, size, distance, movement) which must be detected 
and integrated, and by the difficulties of extracting three-dimensional information from two-dimensional 
inputs. 

Vision is a good application area for neural networks and, for this reason, the neural network approach 
is not a new paradigm in this field. Parallelism is clearly necessary to obtain any kind of near realtime 
throughput in a vision system and many researchers have focused on algorithms that use fine-grain paral- 
lelism. The early visual system is by far the most observable subsystem of the brain. Its patterns of con- 
nectivity have been explicitly mapped through several synaptic layers, and the connections themselves 
are more sparse and spatially organized than in many other parts of the brain. Many vision algorithms 
are modeled after or inspired by the early visual areas. Recent vision research is also exploring adaptive 
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networks that can be trained to perform some of the functions of early vision [115]. Finally, a large behav- 
ioral database, which was created by experimental psychologists, is available. Visual perception has been 
studied parametrically for over a century and has led to many illusions and perceptual effects that can be 
measured with high accuracy. This database has been used by many workers to suggest new algorithms 
and determine performance requirements for vision systems. 

8.2 EARLY AND HIGH-LEVEL VISION 

The vision problem can be broken up into a hierarchy consisting of early vision and high-level vision. 
Early vision processing must segment an image into distinct regions and assign various characteristics - 
such as shape, color, texture, distance, and motion - to each region. It must also recover intrinsic properties 
of objects, like color and shape, independent of the particular viewing conditions, such as intensity of the 
illuminant. 

High-level vision processing must recognize objects using information from early vision processing 
and provide the three-dimensional position of each object. Early vision tasks are generally associated 
with anatomical structures from the retina through the first few levels of the visual cortex. High-level 
vision tasks are generally associated with higher levels of the visual cortex. 

A key task of early vision is the detection and enhancement of contours or edges, and the correspond- 
ing grouping and segmentation of a visual input into regions. This is carried out pre-attentively without 
the intervention of expectancies from internal stored memories. Contours extracted by early vision pro- 
cessing are often defined as a spatial discontinuities in luminance. Contour extraction is, however, much 
more difficult because humans are able to detect contours between regions that have no such luminance 
discontinuities. Contours can also be caused by statistical differences in textural qualities, such as orienta- 
tion, shape, density, or color; differences in binocular disparity or depth; accretion and deletion of texture 
elements in moving displays; and by illusions. 

8.3 PHYSIOLOGY AND MACHINE VISION 

Recent decades have seen remarkable strides in the observational techniques used by physiologists to 
study the functions of early vision. Combinations of electrode recording, staining, and imaging tech- 
niques have yielded increasingly detailed data on cell functions and patterns of connections among cells. 
After Hubel and Wiesel's pioneering work, the 1960s were a period of optimism for the imminent un- 
locking of the secrets of early vision. This optimism faded as increasingly complex subdivisions occurred 
in taxonomies of cell functions, and as increasingly complex perceptual and interdependent patterns of 
connections, many involving dense feedback, were found. The ordered pyramid of many simple inputs 
gradually thinning to a few complex objects, while an appealing metaphor, did not seem to adequately 
characterize early biological vision. 

Meanwhile, advances in machine vision have had a curiously parallel set of developments. Many spe- 
cialized modules that work well in limited domains have been developed, but a unified approach to per- 
forming even the most basic tasks of early vision has never emerged. This development is all the more 
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striking in view of the enormous surge of available computing power in the past few decades. To date, the 
rate-limiting factor on the production of autonomous early vision systems has been the lack of theoretical 
understanding of how to build such a system. The interdependence of diverse sources of visual infor- 
mation, which in human perception serves to cooperatively reduce ambiguity, serves instead in machine 
vision as cross-contaminating sources of noise. 

8.4   SURVEY OF REPRESENTATIVE WORK 

Far too many detailed neural network models of specific visual processes exist for all to be summarized 
in this section. For examples, see the proceedings of the IEEE First International Conference on Neu- 
ral Networks, held in San Diego in June, 1987, and the proceedings of the IEEE Conference on "Neural 
Information Processing Systems - Natural and Synthetic," held in Denver in November, 1987. The fol- 
lowing particular studies have been chosen as representative or illustrative of important trends in methods 
or results. 

8.4.1    Head-centered Frame of Reference 

Andersen and Zipser [283] have studied how neurons in the posterior parietal cortex of monkeys can 
perform the coordinate transformations needed to create a fixed internal head-centered frame of reference 
while the eyes move about in the head. Simulated visual inputs in retinal coordinates from the retina 
and inputs from eye muscles that provided information about eye position were fed to hidden units in a 
multi-layer perceptron as shown in the top of Figure 8-1. The multi-layer perceptron was trained using 
backpropagation to provide a stable output image in head-centered coordinates. After training, the recep- 
tive fields of the hidden units closely resembled those of units in the posterior parietal cortex as shown 
in the bottom of Figure 8-1. Although the use of backpropagation is unlikely in animals, the response 
regions formed help explain why specific types of receptive fields are observed and how they can be used 
to form new internal reference frames. 

8.4.2   Receptive Field Analysis 

Daugman [45,46] has mathematically analyzed the inherent uncertainties in temporal, spatial, orien- 
tation, and spatial frequency resolution for visual receptive fields. This analysis indicates that observed 
spatial and spectral response profiles of certain classes of cortical neurons are optimized for information 
resolution over the four response dimensions. In addition, he has decomposed images into sets of quasi- 
orthogonal "2D Gabor" primitives, that measure the local correlations of oriented structure in images. 
Gabor primitives exploit the non-random structure or coherence of images, which originates from the 
optical projections of solid objects that themselves have some unity of reflectance characteristics. They 
define weighting functions for multiple-scale, oriented receptive fields like those found in the primate 
cortex. 
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Figure 8-1.    Multi-layer Perceptron (Top) Which Produced Receptive Fields (Bottom) Sim- 
ilar to Those Measured by Neurobiologists in the Posterior Parietal Cortex of Monkeys. 
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8.4.3 Connectionist Models 

Feldman and Ballard [17,18,67,64,65] have analyzed connectionist approaches to problems in both 
early and high-level vision. Their approach has highlighted the importance of selecting the internal data 
representation that is best suited for specific problems, of fine-grain parallelism, and of studying neuro- 
biology. Their papers provide a good introduction to the field of connectionist models, good overviews 
of different types of internal data representations useful in neural network models, and a good overview 
of many vision problems and approaches to these problems. They have implemented a number of vision 
algorithms on a large parallel computer called a Butterfly machine (see Part V of this Report for discus- 
sions of neural network hardware). Their group has also both written and distributed a neural network 
simulation program that is in use at many sites [65]. 

8.4.4 Neocognitron 

The neocognitron [72] is a multi-layer image classifier designed to recognize black and white handwrit- 
ten characters. It obtains translation invariance by using a multiplicity of identical input units that extract 
identical visual features from all parts of the input field and by slowly reducing the number of units in 
higher layers. Feature detectors in each layer are created using competitive learning techniques. This 
approach is limited by the large number of nodes that are required. Recent work has begun to explore the 
use of selective attention techniques to recognize multiple simultaneous inputs [71]. 

8.4.5 Markov Random Fields 

Geman and Geman [75] have analyzed and applied Markov random field methods to image processing, 
including blur or noise removal, boundary detection, texture labeling, and object recognition. Given a 
model of image formation (including such "prior distributions" as luminance or spectral measures, or 
likelihood of edge discontinuities), the posterior distribution given the image data is analyzed to find the 
likeliest generators of the image data. By defining an energy or cost function and "running" the system to 
equilibrium by simulated annealing, the desired image processing is performed. In the Markov random 
field approach, the conditional distribution on all variable values reduces to the conditional distribution on 
neighbors, so iterative computations are bounded by the size of local neighborhoods in which computations 
must be performed for a given application. The approach requires the construction or postulation of a 
particular set of image processing constraints or prior distributions for each kind of image structure that 
one wishes to detect or enhance. 

8.4.6 Boundary and Feature Contour Systems 

Grossberg and his colleagues [87,88,93,92,95] have developed a massively parallel neural network 
model designed to perform early vision tasks including boundary detection, segmentation, and filling in 
of color and brightness. These models attempt to mimic the psychophysical phenomena of "emergent" 
segmentation. A segmentation is called "emergent" if regions can be perceived to be separate but do not 
differ in global statistics of luminance distributions or if the perceived boundary separating regions is sharp 
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and continuous while the luminance patterns are discontinuous or fuzzy. The model addresses perceptual 
data in boundary detection, completion, and sharpening and grouping of textural regions, through the dy- 
namical interactions of nodes that are functionally identified with cells found in the early visual pathways 
of primates. 

The model makes explicit the distinction between boundaries that form groupings of visual elements 
and those qualities of surface appearance commonly described by such terms as hue, saturation, or light- 
ness. This distinction rests in part on the complementary attributes of the dynamics of network interactions 
underlying the boundary/feature distinction. Interactions in the boundary contour system (BCS) are di- 
rected inward between two or more orientationally tuned nodes that are sensitive to amount of contrast, 
but not direction of contrast (light-to-dark versus dark-to-light). A particular arrangement of short-range 
competition and long-range cooperation among orientation sensitive nodes ensures a rapid, active sharp- 
ening of boundaries, including emergent boundaries. Interactions in the feature contour system (FCS) are 
diffusive, flowing outwards from any single active node, and are sensitive to both amount and direction 
of contrast. 

Patterns of activity in the BCS restrict the diffusion of activity in the FCS, and thus regions of like color 
or contrast typically match regions formed by boundary segmentations one-to-one. Thus the objects that 
people recognize in everyday environments generally have surface appearance attributes that are unitary 
and distinct from appearance attributes of other objects. Many laboratory curiosities, on the other hand (in- 
cluding illusory contours, Glass patterns, Beck/Julesz textural displays, and neon color spreading), present 
the observer with a seemingly paradoxical scission between recognizable regions and phenomenal color 
patterns. The network model clarifies how these phenomena are inevitable consequences of the strategies 
that the primate early visual system has evolved in order to coherently segment and group complex pat- 
terns of optical stimulation in real time and with cells of finite, quantized resolution. This work typifies 
an approach which relies heavily on psychophysical results (primarily results with illusions) to define the 
details of a complex model. The model has not yet been tested with real images. 

8.4.7    A Computational Approach 

One theoretical approach to the vision problem was initially proposed in [174,173). A good summary 
of this work and of the machine vision field in general is available in [116]. The approach was to first 
determine a computational theory that specifies what needs to be computed and only then to devise an 
algorithm and hardware to perform those computations. Insights leading to new theories come primarily 
from the physics of inverse optics and physiological studies of early vision. It was found that computa- 
tions often fit into a mathematical class of problems known as ill-posed problems which can be solved by 
mathematical techniques from an area called regularization theory [207]. A mathematical approach using 
Markov random fields can be used to solve such problems. This approach leads to algorithms that can be 
implemented using neural networks made of analog resistance arrays and switches [207,140,139]. Such 
analog preprocessors are currently under development at a number of laboratories. The Markov random 
field approach provides a useful framework for extracting specific features of regions and also for integrat- 
ing multiple features [74]. Many of the vision algorithms, including those using Markov random fields, 
have been programmed to provide rapid throughput using a large parallel computer called the Connection 
Machine. Many algorithms have also been tested with real images. 
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The original presentation of this computational theory of vision separated the computational theory from 
the algorithm and the hardware implementation. Experience over the last 15 years with this approach, 
however, has demonstrated that these three components of vision research are intrinsically intertwined 
and cannot be treated as if they were independent [116]. Recent work stemming from this approach has 
begun to explore techniques to learn early vision algorithms. For example, it was recently demonstrated 
that an algorithm to extract intrinsic color can be learned from examples [115]. 

8.4.8 Self-organization in Early Vision 

Linsker [155] has investigated the self-organization of cells with opponent ("on-center/off-surround") 
and orientationally selective receptive fields. In his model, spontaneous cell activities and some simple 
rules for synaptic modification (Hebbian learning) result in spatial, or map-like, organization of cells. The 
receptive fields of these cells mimic those of biological neurons in early vision areas. 

8.4.9 Silicon Retina 

Mead and his colleagues [184,185] have developed an analog VLSI vision preprocessing chip mod- 
eled after the retina. The design not only replicates many of the important functions of the first stages of 
retinal processing, but it does so by replicating in a detailed way both the structure and dynamics of the 
constituent biological units. Thus the logarithmic compression in photon input to output signal charac- 
teristic of biological rods is accomplished not by digital processors computing logarithms but by analog 
circuits that result in a logarithmic transfer function. Similarly space and time averaging and temporal dif- 
ferentiation are accomplished by analog processes and a resistive network. Mead was able to synthesize 
these processes in part because they are so elementary and so observable in biology. While not all of the 
functions of biological vision have been as thoroughly analyzed as those of the retina, Mead's work is a 
paradigm of what can be accomplished when biological discovery drives technological implementation. 

8.4.10 Binocular Disparity 

Schwartz and Yeshurun [230,282] have developed an algorithm to extract disparity or depth information 
from binocular data that was motivated by the existence of binocular disparity columns early vision areas 
of the brain. This algorithm is based on a cepstral analysis that could be performed using neural-like cir- 
cuits if access were provided to information in nearby binocular disparity columns. They also emphasize 
the role of computational maps in the visual cortex and note that this map approach may lead to greater 
understanding of visual processing. 

8.4.11 A Supercomputer Model 

Travis, Gremillion, and Mandell [84] have implemented an extensive model of early visual processes on 
a supercomputer. Their work is noteworthy for its attempt to simultaneously describe several biologically- 
based stages (retina, lateral geniculate nucleus, primary visual cortex) and at the same time to model 
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specific physiological classes of cells in detail. They have begun to investigate the role of feedback and 
temporal delays, as well as spatial filtering, in processing signals at various stages. 

8.4.12    Perceptually Motivated Features 

Walters [268,269] has developed image segmentation and object recognition algorithms based on the 
use of perceptually motivated features. She has also emphasized the importance of data representation 
in neural network vision models. The results of psychophysical experiments suggest the existence of a 
hierarchy of visual features based on the relations between image contours. The human visual system ap- 
pears to be pre-attentively, selectively sensitive to image contours which contain certain of these features. 
The results have been used to create computer vision algorithms for the segmentation of boundary images 
into sets which have a high probability of depicting a single object. A related network architecture, called 
rho-space, has been developed for the detection and representation of oriented edges. The input to the net- 
work is the output of oriented edge operators. Computations within the network are based on orientation- 
dependent, three-dimensional, excitatory and inhibitory neighborhoods. Among the networks capabilities 
are: natural representations of connectivity, filling in of incomplete or illusory contours, simultaneous 
coarse and fine representations or orientation information, and absence of reliance on domain-dependent 
knowledge or model-based processing. 
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9.   SPEECH RECOGNITION 

9.1    INTRODUCTION 

Speech is the most natural form of communication. Compact implementations of accurate, realtime 
speech recognizers would find widespread use in many applications including: 

• Automatic transcription, 

• Simplified man-machine communication, 

• Word-spotting, 

• Aids for the deaf with realtime text or tactile output, 

• Aids for the physically disabled which respond to voice commands, 

• Sonar pattern recognition, 

• Acoustic surveillance, 

• Auditory input for automata, 

• Automatic language translation, 

• High-fidelity, low-bit-rate speech storage and communication, and 

• Secure voice-keyed locks. 

Compact recognizers could be used to simplify the complex arrays of switches and controls used in 
aircraft cockpits, to interrogate databases in command and control centers, to replace relatively large key- 
boards in compact equipment, and to automate data entry in many applications where data is currently 
entered manually. 

Unfortunately, current speech recognizers perform poorly on talker-independent continuous speech 
recognition tasks that people perform without apparent difficulty. Although children learn to understand 
speech with little explicit supervision and adults take speech recognition ability for granted, it has proved 
to be a difficult task to duplicate with machines. This is due to variability and overlap of information 
in the acoustic signal, to the need for high computation rates (a human-like system must match inputs to 
50,000 words in real time), and to the multiplicity of analyses that must be performed (phonetic, phonemic, 
syntactic, and pragmatic). 

The best existing speech recognizers perform well only in highly constrained tasks. For example, talker- 
dependent isolated-word recognizers can be trained to recognize 105 words spoken without sentence con- 
text with 99% accuracy [196]. Talker-dependent word recognition accuracy with sentence context can be 
as high as 95% for 20,000 words from sentences in office memos spoken with pauses between words [ 16]. 
This translates to a sentence accuracy of only 50%. Performance is generally much worse for connected 
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speech, when training isn't provided for each talker, and in noisy and stressful environments. The best cur- 
rent algorithms use hidden Markov models (HMM) techniques [211] and require high computation rates 
for large vocabulary tasks. These rates are difficult to obtain with existing single-processor computers. 

The hidden Markov model (HMM) approach to speech recognition is currently the most general frame- 
work for speech recognition research. It is based on information and communication theory results and 
provides automatic training and efficient temporal alignment and matching. Recent progress, however, 
has slowed due to a number of problems with this approach, including: 

• Internal model structure is not learned but must be pre-specified before training. 
Model builders must specify sub-word models, provide phonemic transcriptions 
of words, and develop rules to describe allowable types of phonological variation 
caused by word boundary effects, and changes in talking style and dialect. 

• Coarticulation is modeled poorly. Coarticulation caused by nasals or laterals may 
extend over many acoustic segments. This is not easily captured with a single-order 
Markov assumption. 

• Poor acoustic-phonetic modeling results in confusions between similar sounding 
words. 

• Supervised labeled training data is required to train high-level allophone and word 
models. The abundance of unsupervised speech data that is readily available thus 
cannot be used. 

Recent work on neural networks raises the possibility of new approaches to the speech recognition 
problem. Neural networks offer two potential advantages over existing approaches. First, they could pro- 
vide the high computation rates required for continuous speech recognition using many simple processing 
elements operating in parallel. Second, new neural network algorithms could perform better than exist- 
ing algorithms if they could both adapt internal parameters over time to maximize performance and also 
self-organize by altering network structure to capture new phenomena as they are observed. 

Work to date with neural networks has focused on talker-dependent isolated word recognition. A block 
diagram of an simple isolated word recognizer is shown in Fig 9-1. Four major operations are required: 

1. A preprocessor must extract important information or parameters from the speech 
waveform. In most recognizers, an input pattern containing spectral information is 
extracted every 10 milliseconds using fast Fourier transform (FFT) or linear predic- 
tive coding (LPC) techniques. 

2. Input patterns from the preprocessor must be compared to stored exemplar patterns 
in word models to compute local distances. 

3. Local distance measures must be used to time-align input patterns to classification 
nodes in the word models and arrive at whole-word matching scores. Time align- 
ment is necessary to compensate for variations in talking rate and pronunciation. 
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4. The word with the best score must be selected by picking the word model with the 
maximum output. 

Neural networks have been proposed to perform all of the above operations. 
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Figure 9-1.    Block diagram of an Isolated Word Recognizer. 

9.2   PHYSIOLOGICAL PREPROCESSORS 

A number of researchers have proposed new forms of preprocessing motivated either by the physiology 
of the cochlea or by psychoacoustic results [34,50,76,166,176,183,191,236,238]. Two preprocessors [ 176, 
191 ] use analog processing, including a filter-bank, to extract a small set of perceptually important binary- 
valued features in real time. One of these preprocessors [176] was used in a commercial realtime isolated 
word recognizer. 

Two recent preprocessors [34,166] rely primarily on spectral magnitude information processed in a way 
to model psychoacoustic and physiological results in loudness, masking, and adaptation. Such processing 
can provide a small performance improvement over more conventional approaches [34]. 

Other recent preprocessors [50,76,183,236,238] use synchrony information similar to that which is 
available on the auditory nerve where timing information of nerve spikes is available. This phase infor- 
mation could increase recognition performance by supplementing the spectral envelope magnitude infor- 
mation used in current recognizers. Synchrony information is typically obtained by filtering the input 
using sharp filters with characteristics similar to those of the mechanical filters in the cochlea and then 
analyzing the phase information of the resulting filtered waveforms. Spectrograms obtained with steady- 
state vowels and speech sounds illustrate an improvement in ability to visually identify vowel formants 
(resonant frequencies of the vocal tract) in noise with this technique [50,76,236,238]. In addition, detailed 
comparisons to a standard front end with an existing speech recognizer reported in [76] demonstrated sig- 
nificant performance improvements in noise with the physiological front end. One preprocessor [183] is 
modeled after the cochlea and is being implemented in VLSI using analog processing. Both synchrony 
and spectral magnitude information could be extracted from this device. This work illustrates how pre- 
processing could be miniaturized and integrated with higher levels of processing. 
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9.3    CALCULATING DISTANCE SCORES TO EXEMPLAR PATTERNS 

Conventional speech recognizers compare input patterns (vectors of parameters) to stored exemplar 
patterns whenever a new pattern is provided by the preprocessor. Neural networks could perform this 
function for almost all conventional recognizers using fine-grain parallelism because, as described above, 
multi-layer perceptrons can calculate any likelihood function. 

Conventional recognizers frequently calculate the Euclidean distance between the input and all exem- 
plar patterns. This can be performed in parallel using a neural network with an architecture similar to 
that of the lower half of the feature map classifier presented in Figure 6-3. The connection weights in 
this network then have to be set to represent the centroid locations of the exemplar patterns. Continuous- 
observation recognizers require all outputs of second layer nodes without selecting that node with a maxi- 
mum value while discrete observation recognizers use node outputs after the node with a maximum value 
is selected. Both approaches have been used in experimental isolated word recognizers [27,145,158]. 
Recognizers that don't use Euclidean distance measures could use either a multi-layer perceptron with 
two layers of hidden units or a structure similar to that of a feature map classifier to obtain the desired 
likelihood functions. 

An example from [114] presented in Figure 9-2 illustrates how neural network classifiers can be used 
to compare fixed input patterns to reference patterns for speech data. Input data consisted of the first 
two vowel formants from roughly 330 tokens of 10 different vowels spoken in /hVd/ context by 67 men, 
women, and children. These data were obtained from scatter plots in [203]. Half of the data was used 
for training to form reference patterns for the 10 vowel classes and half was used for testing. The deci- 
sion regions shown in this Figure were formed by a two-layer perceptron trained with back propagation. 
Boundaries for these regions are near those that are typically drawn by hand to separate vowel regions. 
Four recognizers which can be implemented with neural network architectures were tested (k-nearest 
neighbor, Gaussian, two-layer perceptron, and feature map classifier) on this data. All provided an error 
rate of roughly 20%. The two-layer perceptron, however, required more than 50,000 supervised training 
trials for convergence with backpropagation. The feature map classifier required fewer than 50 supervised 
training trials. 

9.4    CLASSIFYING WORDS AND PHONEMES WITHOUT TIME ALIGNMENT 

A number of studies have used multi-layer perceptrons and other neural network classifiers to classify 
isolated words (primarily digits), phonemes, and vowels using pre-segmented speech tokens [27,29,30, 
60,81,158,199,210,267,272]. Most of these studies used multi-layer perceptrons with inputs derived from 
spectral analyses of a pre-segmented section of speech waveform. All inputs were typically applied at 
once as one whole spectrographic input pattern. In some cases, multi-layer perceptrons were used in 
conjunction with conventional time alignment techniques [27,30] to replace conventional classifiers or 
vector quantizers and, in one case, recurrent connections were provided [272]. Although many of these 
studies provided encouraging results, few careful comparisons to conventional classifiers were performed. 
In those cases where comparisons were performed, neural network classifiers typically did not provide 
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substantial performance improvements over more conventional techniques such as Gaussian or k-nearest 
neighbor classifiers [27,30,158,199]. 
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Figure 9-3.    Time delay Neural Network Used to Classify the Voiced Stops "B.D.G". 

Encouraging results were recently obtained by Waibel [267]. A multi-layer perceptron with time delays 
shown in Figure 9-3 was used to classify the voiced stops "b,d,g." The boxes labeled T in this Figure 
represent fixed delays. Speech frames characterized by spectral coefficients are input on the lower left. 
The three boxes on the bottom thus represent an input buffer containing a context of three frames. Outputs 
of the nodes in these boxes (16*3 spectral coefficients) feed to eight hidden nodes in the first layer. Outputs 
from these nodes are buffered across the five boxes in the first hidden layer to form a context of five 
frames. Outputs from these boxes (8*5 node outputs) feed to three hidden nodes in the second hidden 
layer. Outputs from these three nodes are integrated in a final output node. 

The time-delay network was trained using backpropagation and compared to a discrete-observation 
HMM recognizer that used 256 symbols and three-node phoneme models. This recognizer was trained 
using the forward-backward algorithm. Both systems were trained with roughly 2,000 voiced stops and 
tested with a different set of 2,000 voiced stops. Stops were excised manually from a corpus of 5,260 
Japanese words spoken by three male talkers. The excised portion contained 15 frames (150 millisec- 
onds) centered around vowel onset. The neural network classifier performed much better than the HMM 
recognizer. It provided an error rate of only 1.5% compared to the HMM error rate of 6.5%. 
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Boulard [27] constructed a similar neural network allophone classifier which had 14 delays in the input 
layer to provide a context of 15 frames. No delays were used in the hidden layer. Input nodes feed 
to 50 hidden units which feed to 26 output nodes (one per each of 26 allophones). This network was 
trained using backpropagation and 20 hand-segmented digits spoken by one male talker. Tests on 20 other 
digits resulted in no errors when node outputs were used as input distances for a dynamic time-warping 
recognizer. 

9.5    NEURAL NETWORKS FOR TIME ALIGNMENT 

Sequences of input observations from a preprocessor must be time-aligned with classifier nodes to 
provide good recognition performance by compensating for variations in talking rate and pronunciation. 
Conventional engineering approaches to this problem are to use the Viterbi algorithm as used in HMM 
recognizers or to use dynamic programming as used in dynamic time warping (DTW) recognizers. One 
obvious neural network approach is to attempt to implement a Viterbi or DTW decoder using a neural 
network architecture. 

9.5.1    Implementing Viterbi Decoding Using Neural Networks 

A neural network architecture that implements a Viterbi decoder for an HMM continuous-observation 
recognizer is shown in Figure 9-4; it is called a Viterbi network. 
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Figure 9-4.    Neural Network Called a Viterbi Network that Implements a Viterbi Decoder 
as Used in HMM Speech Recognizers. 
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Classifier nodes in this network, represented by large open triangles, correspond to a nodes in a left- 
to-right HMM word model. Each classifier node contains a threshold logic node followed by a fixed 
delay. Nodes positioned above classifier nodes are threshold logic nodes and nodes below classifier nodes 
simply output the sum of all inputs. A temporal sequence of input vectors is presented at the bottom of the 
network and the matching score gradually builds up over time and is produced at the output. Subnetworks 
above the classifier nodes select the maximum of two inputs and subnetworks at the bottom compute the 
log probabilities required by a Gaussian classifier. 

Studies performed using more than 4,000 word tokens from a large speech data base were used to 
evaluate the performance of this network. This database was made from tokens of 35 difficult words 
spoken by nine talkers. Weights in Viterbi networks with 15 classifier nodes were adjusted based on means, 
variances, and transition probabilities obtained from the forward-backward training algorithm using five 
training tokens per word. Inputs consisted of 12 mel cepstra and 13 differential mel cepstra that were 
updated every 10 milliseconds. Performance was good and almost identical to that of current HMM 
isolated word recognizers. The error rate was 0.56%, or only 23 out of 4,095 tokens wrong. 

9.5.2 Psychological Models of Speech Recognition 

A number of new neural network models which are primarily psychological models of speech per- 
ception have been proposed [59,167,175,224]. One model, called the cohort model [175], assumes a 
left-to-right acoustic phonetic analysis of speech in real time. It accounts for many psychophysical results 
in speech recognition, such as the existence of a time when a word becomes unambiguously recognized 
(recognition point), the word frequency effect, and recognition of contextually inappropriate words. This 
model, however, is descriptive and is not expressed as a computational model. 

A second psychological model which is more mathematical and has been simulated using speech input 
is called the trace or interactive activation model [59,224]. This model is based on neuron-like nodes and 
emphasizes the benefits that can be obtained by using coarticulation information to aid in word recognition. 
The current form of this model is impractical because the problem of time alignment is not addressed and 
the entire network must be copied on every new time step. 

The third psychological model is called node structure theory [167]. It is a qualitative neural theory of 
speech recognition and speech production. It is similar in many ways to the cohort and interactive activa- 
tion models but much more comprehensive. The problem of rate and sequencing is considered seriously 
and problems such as stuttering, internal speech, and rhythm are considered. This theory, however, is 
again not expressed in terms of a formal mathematical model. 

9.5.3 Computational Models of Time Alignment 

A number of neural network models have been proposed that perform some component of the time 
alignment task [35,37,48,81,101,257,281]. Two of these models have been tested with speech input 
[48,81,257,281]. One of these two [257] assumes that variable length delays are available and that delays 
cause temporal dispersion to pulse inputs that increases with delay. Different delays are attached to fea- 
ture detectors to form a matched filter that concentrates energy in time. A summing node for each word 
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produces a large output after that word is presented at the input. This technique provided reasonable digit 
accuracy for a few talkers [257] with limited testing. Detailed tests with a large speech database [80] using 
a hierarchical version of the model with both allophone and word models yielded performance no better 
than that of an existing HMM recognizer. 
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Figure 9-5.    A Synaptic Triad that can be Used to Recognize Two-component Pattern Se- 
quences. 

Two closely related models which have been tested with a small amount of speech data are described 
in [48,281 ]. Both models include neurons with shunting or multiplicative nodes similar to those that have 
been proposed in the retina to compute direction of motion [206]. Three neurons are grouped to form 
a synaptic triad that can be used to recognize two component pattern sequences. Figure 9-5 shows one 
synaptic triad. Node A is the primary input to the triad and node B is the primary output. Node M is 
the modulator input. The signal from the modulator input m(t) controls the instantaneous connection 
weight or gain g(a, t) from A to B. This gain modulates the input to node B. It decays to zero unless 
the modulator input is "high." After the modulator input has been "high" for Tp (time for potentiation) 
seconds, a slow internal integration builds up and switches the gain to a "high" value G. This is illustrated 
in the plot in Figure 9-5 where the modulator input first goes high and the gain rises to G after Tp seconds. 
The triad will have a "high" output only if the input sequence is M-A (output of node M is "high" followed 
by output of node A) and node M is "high" for at least Tp seconds. Other pattern sequences (A-A, M-M, 
A-M) will produce no output. 
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Synaptic triads can be arranged in sequences and in hierarchies to recognize features, allophones, and 
words [281]. In limited tests, handcrafted networks could recognize a small set of words spoken by one 
talker [281 ]. More interesting is a proposed technique for training such networks without supervision [48]. 
If effective, this training could make use of the large amount of unlabeled speech data that is available and 
lead to automatic creation of sub-word models. Further elaboration is necessary to describe how networks 
with synaptic triads could be trained and used in a recognizer. 

Three related neural models have been described but never tested with speech input [35,37,101]. One 
model [101] is described as a nearest matched-filter classifier for temporal patterns. This network is 
similar in structure to a feature map network except nodes have different rise and fall time constants 
and nodes are interconnected such that only a few nodes are active at any time. No details are provided 
concerning how this network should be trained or how how node outputs should be integrated to detect 
allophones or words. 
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Figure 9-6.    A Model Called a Masking Field can be Used to Detect Pattern Sequences. 

A model described in [35], called a masking field, is shown in Figure 9-6. Input is applied to the bottom 
of this network which is, again, similar to a feature map network. Typically, only one node in this network 
has a "high" output at any time. These node outputs feed other nodes that provide short-term storage. 
The outputs of short-term storage nodes decay over time. Different input sequences thus lead to different 
amplitude patterns in short-term storage. For example, the input C-A-T sampled at the end of the word 
will yield an intensity pattern in short-term storage with node C low, node A intermediate, and node T 
high. The input T-A-C will yield a pattern with node C high, node A intermediate, and node T low. These 
intensity patterns are weighted and fed to nodes in a masking field with weights adjusted to detect different 
patterns. The masking field is designed such that all nodes compete to be active and nodes representing 
longer patterns inhibit nodes representing shorter patterns.   It has difficulty recognizing patterns with 
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repeated sub-sequences because nodes in short-term storage corresponding to those sub-sequences could 
become saturated. Further elaboration is necessary to describe how masking fields should be integrated 
into a full recognizer. 

A related speech recognition model is currently under development [37]. It uses many of the neural 
network components described in [90] to form a complex multi-module system. One interesting char- 
acteristic of this model is that speech production and recognition will be integrated and used to develop 
sub-word models and stabilize those models. 

A final approach to pattern sequence recognition is to build an associative memory for pattern sequences 
as described in [131,132]. Here, a neural network with recurrent connections and delays is designed that 
spontaneously produces pattern sequences. When an external pattern sequence is applied, the internal 
sequence can phase lock to the external sequence and potentially fill in missing components. 
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10.   ROBOTICS 

10.1 INTRODUCTION 

Current industrial robots are extremely limited in their capabilities. The neural network approach has 
the potential for adding the ability to learn and adapt, and for integrating information from multiple inputs. 
Neural networks are beginning to find practical applications in the field of robotics. Most robotic problems 
currently being attacked fall into the following four general classes: 

• Programming and controlling the trajectories of multi-axis robotic arms, 

• Robot navigation, 

• Arm-camera (i.e., hand-eye) coordination, and 

• Visual/tactile fusion for object recognition. 

These problems have been addressed using a number of neural network models, including: the CMAC 
network, topographic sensory/motor maps, multi-layered perceptrons, simulated annealing, and Hopfield 
networks. In some cases, the neural network is a novel way of implementing an existing idea in robotics, 
while in other cases it is the heart of a new approach to robotics. The status of these projects ranges from 
being not yet debugged at the simulation level, to fully debugged laboratory mechanical models, to almost 
industrial applications. The research is described below in more detail with related work grouped together. 

10.2 TRAJECTORY CONTROL 

The problem of trajectory control is to design a control system to generate the desired trajectories of a 
robotic arm during a relatively fixed and routine task. This is a typical application in robotic assembly in 
fixed environments. 

10.2.1    CMAC Models 

One of the major inspirations in neural robotics has come from models of the cerebellum. There have 
been extensive experimental studies of the cerebellum in the last several decades. These studies have 
lead to the conclusion that the cerebellum is essential for the adaptation, learning, and execution of both 
reflexive and voluntary motor actions. Researchers have been afforded a rich source of experimental data 
to inspire and constrain their models. 

The earliest formulations of cerebellar models were made by David Marr [171] and James Albus [5]. 
Their models are essentially the same except in how the neural weights are changed. Albus calls his model 
the Cerebellar Model Articulation Controller (CMAC). The CMAC is essentially a clever adaptive table 
look-up technique for representing complex, nonlinear functions over multi-dimensional, discrete input 
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spaces. It reduces the size of the look-up table through hash-coding, provides for response generalization 
and interpolation through a distributed, topographic representation of the inputs, and learns the appropriate 
nonlinear function through a supervised learning process that adjusts the content or weight of each address 
in the look-up table. A block diagram of the CMAC model is presented in Figure 10-1. Inputs in this Figure 
project through a hash coding stage onto table A, and then to output summers. 
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Figure 10-1.    The CMAC Cerebellum Model Forms Nonlinear Input/Output Mappings 
Useful for Robotic Control. 

Albus's original application of the CMAC [5] was in a novel control scheme. The CMAC was placed in 
a closed control loop where the inputs were high-level control commands along with the current values of 
the robot's joint variables, and the outputs were the drive signals to the robotic actuators. The task was to 
produce a desired trajectory through simple iteration of the learned nonlinear mapping, given the correct 
command state and given an initial configuration that was on the desired trajectory. Training procedures 
were proposed to achieve this goal but were not suitable for industrial application. Albus also explored 
the concept of hierarchical control within this novel CMAC system. 

Jordan [119] proposed a recurrent model that is similar in structure to the recurrent network Albus 
originally developed. It produces one or more different desired output sequences. A multi-layer network 
has both state inputs which feed back the output state and plan inputs which designate the desired output 
sequence. An error-corrective training algorithm is provided for this network which allows "don't care" 
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outputs. Experiments demonstrate that this network can exhibit some of the effects of speech production 
including coarticulation. 

One research group is applying the CMAC in a standard controller scheme in a very novel and clever 
fashion [187,118]. Here, the CMAC is used to learn the inverse kinematics of the robot, computing the 
correct torques for the next control cycle given the desired robot coordinates computed by a standard 
trajectory planner. The learning is done on-line, with the CMAC operating in parallel with a fixed-gain, 
linear feedback controller. Initially, the linear controller is doing all of the control, while the CMAC 
"looks over its shoulder" and learns the inverse kinematics from the approximate trajectories produced. 
As the CMAC learns, it corrects the errors of the linear controller, refining the trajectory, and thus its own 
learning data, in a positive feedback loop. Eventually, the CMAC provides all of the drive signals for 
the robotic actuators, since there is no longer any error for the linear controller to minimize. This system 
has been applied to the control of a five-degree of freedom robot arm, and is close to being used in an 
industrial application. Kawato's group [125,126] has implemented a similar model on a six-degree-of- 
freedom robot, also controlling trajectories with nonlinear dynamics. Their approach is also aimed at an 
industrial application. 

10.2.2    Backpropagation Models 

As noted above, multi-layer peceptrons trained with backpropagation can learn arbitrary nonlinear in- 
put/output mappings from examples. These mappings can be used to model inverse kinematics, as was 
done by Miller with the CMAC model, or they can be used to learn nonlinear coordinate transformations 
required for controlling robot arms, as in [244]. Speed of convergence can be improved by initializing 
weights to force the network to produce desired input/output values at specific points in the input/output 
space. Such an initialization would use fixed weights in the first two layers to form bins or hypercubes, as 
in the CMAC model, or the hypercube classifier, described in [ 114]. Backpropagation can then be used to 
adjust this mapping adaptively. 

10.3   ARM/CAMERA CONTROL 

There is growing interest in applying robotics in applications where the environment of the robot can 
change in unforeseen ways. For example, various obstacles (people) may enter or leave the working area 
of the robot and need to be avoided, or a novel object may need to be grasped. One general approach to 
this type of problem is to provide a visual sense of the objects in the environment to the robotic controller, 
which then must compute an appropriate, perhaps entirely novel, trajectory. 

10.3.1    Sensory/Motor Maps 

Two research groups are applying sensory/motor topographic maps to this problem. An alternative 
cerebellar model has been developed by Grossberg and Kuperstein [91]. The learning algorithm and 
distributed representation in their model is similar to the CMAC model, but there are also some key dif- 
ferences. Their model focuses on the benefits of constraining all internal representations in the model to be 
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topographic. Topography is an ordered contiguous mapping of a surface. Topographic representations are 
based solely on the set of sensory transducers and motor effectors. By coupling topographic representa- 
tions with reflexive behavior, Grossberg and Kuperstein show how a controller can learn motor parameters 
through self-supervised learning. In such learning there is no need to define the desired parameters exter- 
nal to the model. Moreover, this model is more consistent with experimental data on lesions, behavior, 
physiology, and anatomy of cerebellar circuits than the CMAC model. Grossberg and Kuperstein show 
simple computer simulations that illustrate self-supervised learning to control eye movements. 

More recently, Kuperstein [149,148] has developed a new neural architecture and self-supervised learn- 
ing algorithm to control adaptive sensory-motor coordination. This is based more on a neocortical model 
and is called Infant (Interactive Networks Functioning on Adaptive Neural Topographies). Learning oc- 
curs via a circular reaction, an idea borrowed from Piaget. The circular reaction has two stages. In the first 
stage, random self-produced motor signals are used to generate the entire range of object manipulations 
one at a time. During each posture, with object in hand, visual input signals about the object are processed 
and combined into a target map through modifiable weights, producing computed motor signals. Errors in 
the target representation are determined by the differences between the actual motor signals and the motor 
signals computed from the visual input. These errors are used to incrementally change the weights, so that 
on future trials, the computed motor signals are closer to the actual motor signals. These changes, for all 
important postures, constitute the sensory-motor correlation and force visual and internal motor control 
signals to become self-consistent. 

In the second stage of the circular reaction, learned sensory-motor correlation is used to recognize 
and manipulate objects which are similar to those that were experienced in the first stage. In this stage, 
an object first comes within view and reach, free in space. The eye foveates on the object and motor 
commands generated by eye muscles and visual input drive actuators to reach for the object. These signals 
are different for specific orientations of any one object and for different objects. The architecture used in 
the Infant model is composed of motor map representations interleaved within a sensory topography. This 
allows any number of topographic sensory inputs to be mapped onto any number of motor outputs. A 
simple computer simulation of this neural network for controlling a simulated robot arm with five degrees 
of freedom demonstrated how a cylinder could be grasped using binocular information from two eyes. 
The simulations show that the network can touch a cylinder to an average accuracy of 4% of the arm's 
length. Other recent work is examining the dynamics of planned arm movements using nonlinear neural 
networks [28]. 

10.3.2    Darwin III 

Darwin III [215,57] is the one of the most complex neural network simulations yet developed. A block 
diagram of this network is presented in Figure 10-2. It is a simulated automaton made up of many subnet- 
works. Inputs to the automaton are from a simulated eye which scans a two-dimensional input array under 
control of opponent pair muscles. This eye has a large but low-resolution outer visual field and a smaller, 
high-resolution inner visual field on its simulated retina. Inputs are also provided by a multiple-jointed 
arm that can reach and "feel" objects presented on the input field. Darwin III is first trained to track objects 
presented on the input array by coordinated movement of eye muscles. The error signal to learn this task 
is the distance between the position of the object on the retina and the center or fovea of the retina. Darwin 
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Figure 10-2.    A Block Diagram of the Darwin III Simulated Automaton. 

Ill is then trained to reach out, touch, and feel around the border of objects using self-supervision training 
techniques. Finally, it is trained to classify objects using supervision and both visual and touch inputs. 

Darwin III is the most complex in the series of models created to explore a brain theory being developed 
called "neural Darwinism" [57]. This theory differs from other neural network design procedures in its 
emphasis on the importance of Darwinian-like selection to select those neuronal groups or subnetworks 
which respond best to specific input stimuli. The theory assumes that a collection of neuronal groups, 
called a repertoire, is formed during embryogenesis. Groups in a repertoire respond best to overlapping 
but similar input patterns due the randomness of neuronal growth. One or more groups in a repertoire 
will respond to every input pattern, and response to important unexpected inputs is thus insured. Training 
involves competition between groups, which amplifies the responses of specific groups to specific stimuli 
and associates those groups with each other and with a specific appropriate response. 

Neural Darwinism is very different from the common approach of designing a network topology and 
training it with supervision to provide a desired response. Instead, it assumes that there are, by design, 
many subnetworks. Only those with the desired response during training are selected. Important issues 
addressed by this approach include the need to respond to unexpected stimuli, the necessity of classification 
and generalization, and the importance of interacting with the environment. The building of an automaton 
with well-defined tasks, senses, and the ability to manipulate external objects may also be an approach that 
is essential for building adaptive robots, as suggested by [54]. In addition, the experience with simulations 
of large multi-module systems such as Darwin III, which contains roughly 8,000 nodes with roughly 
200,000 interconnections, will probably be essential in building more capable models. 
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Potential Energy Network 

Hogan [106] has applied a potential energy network to the problem of reaching to and tracking an 
object in two-dimensional motion amidst arbitrarily placed objects with a multi-jointed arm that lies in 
the plane of the obstacles. The motion of the arm is severely constrained by the obstacles and yet very 
rapidly (it easily keeps up with rapid man-made movements of the object) reaches around them towards 
the object. The position of the obstacles and the object is observed by an overhead camera. A computer 
then constructs a potential energy surface with peaks at the obstacles and valleys in between leading to the 
energy minimum at the object. A gradient descent algorithm is used to calculate the trajectory of the arm 
from the energy surface. Development of this system has reached the stage of a working laboratory-grade 
demonstration. 

10.3.3 Spatial Reasoning for Robotic Navigation 

Jorgensen [ 120] used neural networks in two stages of a four-step navigation process. First, a Hopfield- 
type network was used to record a map of the positions of objects in the room. Subsequent sensor readings 
from any part of the room could then be used as a cue to the network to retrieve the full room map. 
Second, a simulated annealing network was used for planning a path between the objects to the goal. The 
associative network worked well in this task, but the path planning network was too slow. This work was 
carried out using real robots in a laboratory setting. 

10.3.4 Linear Control 

In the area of linear coordinate transformations, Pellionisz [200] has advocated the use of tensors to 
transform points between the separate coordinate systems used by sensory and motor systems. This ap- 
proach is useful when transformations are linear, data representations are linear, and coordinate systems 
use nonorthogonal axes. It cannot be used easily in cases when nonlinearities are present. In those cases, 
the map-based approaches described above have a significant advantage. 
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11.   NEURAL NETWORKS AND OTHER DISCIPLINES 

11.1 INTRODUCTION 

Neural networks are being used as a tool for modeling and theory development in many disciplines 
besides those mentioned above. This section reviews their use: 

• By experimental psychologists to model classical conditioning, 

• By cognitive scientists to model performance of humans on many tasks, and 

• By computer scientists in field of artificial intelligence (AI). 

Neural network models in the AI field complement more conventional computational symbolic meth- 
ods. Some higher-level AI problems, such as graph matching and constraint propagation, map well onto 
neural networks. Neural network implementations provide advantages in robustness and potential speed 
and seem better at dealing with uncertain and conflicting evidence. Other problems, such as variable bind- 
ing, do not map well onto neural networks. Neural network models, sometimes called connectionist or 
PDP models, are causing a major paradigm shift in the field of cognitive science. Here, they often model 
empirical data better, provide learning capabilities, and often seem more natural than a computational 
approach based on symbols and formal logic. Experimental psychologists have used neural networks to 
model classical conditioning animal learning data for many years. Surprisingly, it was found that the rel- 
atively simple LMS algorithm used to train perceptrons formed a good fit to much data. Modeling other 
temporal aspects of behavioral data has required adding more complex time dependencies to the network 
models. 

11.2 HIGHER-LEVEL AI PROBLEMS 

Virtually all of the work discussed so far as been focussed on the lowest (earliest) levels of intelligence. 
Neural-style models are also being applied to higher-level problems, which have been typically attacked 
by symbolic computational methods. This work overlaps significantly with work described below in the 
section on cognitive science and is usually denoted as "connectionist" or "PDP" modeling. Good examples 
of this work can be found in [177,270]. 

Some problems which have been viewed as high-level AI tasks have elegant formulations in neural 
network terms. Graph matching and constraint propagation are widely used techniques and these both 
map nicely to structured neural networks. Applications exploiting these techniques include those in word- 
sense disambiguation [40,41,271], parsing [62], semantic networks [239] and visual recognition [39]. The 
connectionist approaches to these tasks have already exhibited advantages in robustness and potential 
speed and seem better at dealing with uncertain and conflicting evidence. 

There are, however, many other problems which are at this time much harder to express in neural net- 
work formalisms. From a practical point of view, this means that any near-term applications will be hybrid 
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systems. More interestingly, the Adaptive Knowledge Processing Panel believes it is worth discovering 
how nature solves these problems with connectionist hardware. There are some preliminary approaches 
[9,10,260,246,223], but these give up the advantages of neural networks. Much more work needs to be 
done on basic problems like variable binding [66] and action-sequences, and on their applications to more 
complex AI tasks. 

11.3    COGNITIVE SCIENCE 

Cognitive science is a relatively new discipline forged by pressure on the old boundaries between tra- 
ditional subjects like psychology, linguistics, computer science, neurophysiology, and philosophy. Over 
the last few years, neural network-style models have become one of the dominant paradigms of cognitive 
science [177,229]. Something like one third of all papers at recent national meetings in this field have 
had a connectionist flavor. In addition to the swing of fashion, there are several technical reasons for this 
change. 

Psychologists have been drawn to neural network models because they often do a better job of fit- 
ting data, especially involving timing or errors [49,177]. The adaptive or learning capabilities of neural 
networks have also provided an extended repertoire for cognitive scientists. More generally, the compu- 
tational paradigm based on many interacting information sources appears to many cognitive scientists to 
be more natural than one based on symbols and formal logic. It is too early to be sure, but the widespread 
use of connectionist formalisms could facilitate basic advances in many fields - just as other formalisms 
such as calculus, statistics, and logic have done. 

It is already clear that neural network formalisms are uniquely well-suited to expressing models at all 
levels. The same formal tools, simulators, and intuitions are being exploited for models ranging from 
detailed neural simulation through abstract models of language and thought. Among the benefits of this 
general applicability are a shared scientific language across disciplines and a completely natural framework 
for reduction of higher-level models to their constituents. Since cognitive science is crucially concerned 
with these matters, it is likely that connectionist (neural network) formalisms will continue to play an 
increasingly important role in the discipline. As always, the scientific advances made in modeling tasks 
like vision, speech, and so on will have important applications in practical tasks. 

11.4    CLASSICAL CONDITIONING 

In some ways, there is a much better understanding of biological learning processes at the behavioral 
level than at the physiological level. For example, many behavioral laws of animal learning have been 
found that hold across a wide range of species and response systems, whereas the physiological basis of 
learning is just starting to be understood in a few specific cases. The theory and data of animal learning 
stand as both an opportunity and a challenge to neural network research: An opportunity because animal 
learning is still far more adaptable and efficient than that of the best neural network learning algorithms; 
existing animal learning theory remains an untapped gold mine of ideas for neural network research. A 
challenge because there is an immense database of empirical animal learning results that remains only 
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partially explained. This database constitutes a stringent test of neural network models of learning that 
claim a strong connection to biological learning systems. 

The best understood animal learning process is that known as classical conditioning. Neural network 
researchers since Hebb in 1949 [99] have attempted to explain classical conditioning as a result of synaptic 
learning rules. Early models were proposed by Grossberg [89,85] and Klopf [ 134]. Uttley [263] showed a 
formal relationship between his neuron model and the Rescorla- Wagner animal learning model, and Sutton 
and Barto [255] showed that the Adaline model [275] was essentially equivalent to the Rescorla-Wagner 
model. In the 1980s, this has become a very active area, with numerous new models and extensions of 
old models being explored and compared [94,133,135,254]. 
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12.  TOWARD A THEORY OF NEURAL NETWORKS 

12.1    INTRODUCTION 

This chapter reviews those issues that a theory of neural networks must address and also discusses what 
has been accomplished toward this goal. Although much has been learned through empirical studies and 
past experience, there is a need to take a broad look at the types of constraints on computation produced by 
architectures based on fine-grain parallelism. Theories must be developed to explain how neural networks 
operate. A theory of neural networks must address issues that are specific to these highly parallel systems. 
Some of the major questions that should be addressed include: 

• Capability. What problems does a network have the potential to solve? Is there a 
rich enough data representation available to represent a solution to the problem the 
network must solve? 

• Memory Capacity. How much information can be stored in the network? (This is 
similar to the capability question, but specialized for networks that learn and store 
items in memory.) 

• Learnability. What types of problems are learnable? Can a network be redesigned 
or the data representation be altered to make a problem learnable? (Learnable nor- 
mally means: the number of training samples required to perform a function suc- 
cessfully grows polynomially and not exponentially in the size of the network.) This 
is also called the scaling problem. It is addressed by a branch of mathematics called 
complexity theory. Learnability can also mean training time is long - but acceptable 
- for a give task. 

• Data Representation. How is data represented in the network and how does data 
representation affect structure, capacity, capability and learnability? 

• Network Design. How should a network be designed to perform specific functions? 
What types of nodal processing elements should be used? How should they be 
interconnected? What modes of operation should be used? How should data be 
entered, operated on, extracted, and stored? 

• Learning and Using Internal World Models. How are internal models of an en- 
vironment learned and then used to plan actions and make decisions? What is the 
best strategy for this type of learning and can interaction in an environment speed 
learning? How can learning be structured to build a hierarchy of competencies that 
lead to more and more capable behavior? 

In addition to these more global issues, there are specific questions that must be addressed concerning 
credit assignment and network training and operation that were stated earlier. 
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12.2    CAPABILITY 

Theoretical work has already explored the types of mapping problems that are learnable with specific 
types of networks. Many of these results were described earlier when specific network models were 
discussed. Some, however, are general results that apply to all learning systems. Major results are listed 
below in separate categories. 

The capabilities of single-layer perceptrons with binary inputs and outputs and binary-valued nonlinear- 
ities have been studied by many researchers [97,154,162,178,188,193,194,222]. This work demonstrated 
that single-layer perceptrons could only form linearly-separable Boolean mappings between the inputs and 
the output. Such mappings include logical NOT, AND, and OR functions, the majority gate, and the more 
general "at least X of N" function. A single-layer perceptron with N inputs can with high probability also 
form any desired dichotomy of 2 M input patterns [194]. Mappings that cannot be computed include the 
exclusive OR function and the parity function (the output is "high" if the number of bits is odd and "low" 
otherwise) [188]. In addition, it was proven that a single-layer perceptron presented with binary images 
on an input field could not determine whether an image was connected [188]. 

Early work on multi-layer perceptrons with binary inputs and outputs demonstrated that two-layer per- 
ceptrons with one layer of hidden units could form any Boolean mapping or logic function [154,188,194]. 
For a number of years, perceptrons called "threshold logic gates" were explored as an alternative to more 
conventional NAND, OR, AND, and NOR logic elements. This work even led to small experimental 
hardware computers [117]. 

Perceptrons with continuous-valued inputs and binary-valued nonlinearities have also been studied. 
Early work demonstrated that a two-layer perceptron with one layer of hidden nodes could separate N 
finite distinct input points into any desired dichotomy [194]. This proof says little about the more typi- 
cal classification problem where inputs in different classes are clustered together in one or more compact 
regions. Recent work led to a simple constructive procedure which demonstrates that three-layer per- 
ceptrons can form any desired decision region and that two-layer perceptrons can form convex decision 
regions [29,157]. This is illustrated in Figure 4-2. Further work demonstrated that two-layer perceptrons 
could form both non-convex and disjoint decision regions [ 114]. Studies using backpropagation training 
have demonstrated that it is possible to learn complex decision regions [113,114]. 

Multi-layer perceptrons can also form complex nonlinear input/output mappings. Kolmogorov proved 
a theorem described in [163] which proved, in effect, that a three-layer perceptron could compute any 
continuous nonlinear function of the inputs. This proof, however, requires accurate, problem-specific 
nonlinearities in the nodes. Recent theoretical results [44] have demonstrated that a three-layer perceptron 
with two layers of hidden units and sigmoid nonlinearities can approximate any continuous input/output 
mapping to any desired precision. More work is needed to determine the number of nodes required to 
produce such mappings. 

An extension of the constructive proof described in [29,157] can be used to construct three-layer percep- 
trons that form specific mappings. This extension quantizes the input space into hypercubes and provides 
the desired output value for each hypercube by assigning connection weights to the output node [151]. 
It essentially uses a lookup table technique to form nonlinear mappings. The same concept was used in 
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the "hypercube classifier" described in [114]. Studies using backpropagation have demonstrated that it is 
possible to learn some important nonlinear mappings [151]. 

12.3 MEMORY CAPACITY 

Memory capacity has been studied primarily for associative memories. Results for fully-connected 
Hopfield associative memories [109,23] demonstrate that M < 014 7V, where M is the number of JV bit 
memories that can be stored in a Hopfield network with TV nodes. This bound assumes a bit error rate 
of 5% can be tolerated and requires N2 connection weights. A unary or Hamming network can store 
M memories using N input nodes, M intermediate nodes, and N output nodes [23,156]. This requires 
only 2NM connections. For example, a Hopfield network would require 250,000 connections to store 
10 500-bit patterns, while a unary network would require only 10,000 connections. The capacity of the 
Kanerva model is approximately M < 0.1G, where G is the number of internal nodes [23]. 

12.4 DISTRIBUTION-FREE LEARNING 

A new area in machine learning called distribution-free learning has developed over the past few years. 
It addresses the global question of what Boolean functions are learnable and rigorously defines this prob- 
lem [265]. Initial results were obtained for Boolean functions learned from examples chosen at random 
but with fixed distributions [265]. A function was defined to be learnable if there is a learning algorithm 
which requires a number of examples (t) that grows as a polynomial function of the number of inputs (d). 
The learning algorithm need not classify all examples correctly after training, but must with probability 
1 - 6 have an error rate that is less than e. This definition opened up a new area of study and led to 
numerous theoretical studies [26,25,127,264]. This work is currently being extended to situations with 
continuous-valued inputs and noise [25,12]. A good overview is available in [8]. 

One negative result from distribution-free learning studies is that general linearly-separable Boolean 
functions that can be produced by perceptrons are not learnable [97,127]. Bounds on the number of trials 
required to learn general linearly-separable functions with the perceptron convergence procedure from 
[97] are 

2d <t< dd . 

This is clearly not learnable since the number of examples grows exponentially in the number of inputs. 

A positive result is that monotone disjunctions (OR functions) are learnable. If binary inputs to a net- 
work are denoted x \ ,X2,---,Xd* then examples of monotone disjunctions include ii U13 U17 and 12 UX4. 
Not only are these functions learnable, but they are learnable by simple single-layer perceptrons [97,264]. 
The number of trials required to learn monotone disjunctions with the perceptron convergence procedure 
from [97] is 

t<d2 . 

In simulations, the number of trials appeared to grow only linearly with d.  Recently, a variant of the 
perceptron convergence procedure was developed that makes a bounded number of errors when learning 
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monotone disjunctions [162]. The number of errors for this algorithm is bounded by 

errors < 2/c(log2(<i+ 1)) + 1 , 

where k is the number of terms in the disjunction and d is the number of inputs. Monotone conjunctions 
(AND functions) are also learnable [97,264]. The number of trials required to learn monotone conjunctions 
with the perceptron convergence procedure from [97] is 

t<d\ 

Another class of Boolean functions that is learnable are called k-DNF meaning functions in k-disjunctive 
normal form. These are functions made from disjunctions (OR) of terms made from conjunctions of 
(ANDing) inputs where each conjunction involves at most k inputs. For example, a 3-DNF function of 
inputs x i, X2, xj,, X4,15 could be(x\ C\xi) U (xj fl £4 His). The constructive proof mentioned above 
[29,157], which demonstrates that a three-layer perceptron with continuous-valued inputs can form ar- 
bitrary decision regions, uses this type of function. Weights in the upper two layers compute a k-DNF 
function of the outputs of first-layer nodes. This function also is a subset of DNF functions which can be 
used to form any arbitrary Boolean function. 

A number of researchers have suggested training algorithms to use with two-layer perceptrons to learn 
k-DNF functions [97,114,162,264]. Most algorithms use some form of unsupervised competitive learning 
to learn conjunctions in the first layer and supervised learning to learn disjunctions in the second layer. 
[96,114]. Two hierarchical training algorithms were tested on problems that are k-DNF functions (the 
multiplexer problem from [19] and the symmetry problem from [225]). The new hierarchical algorithms 
required roughly 500 training trials while Ar-P and backpropagation training required more than 75,000 
training trials to learn these functions. When compared on a classification problem [114], hierarchical 
algorithms typically required fewer than 500 trials, while backpropagation training required more than 
60,000 trials. These studies illustrate the improvements in training time that can be provided using hi- 
erarchical networks by tailoring the training algorithm to match the complexity of the problem. They 
demonstrate that data representations which lead to learning of disjunctions are very useful because they 
result in rapid learning. The map representations described in [17] may be common in biology for this 
reason. 

12.5    LEARNING AND USING INTERNAL WORLD MODELS 

The necessity of building and using internal models of the world has often been noted [15,247,253]. 
Once learned, internal models can be used as a simulation of the external environment. Actions and 
situations can be proposed to the model to predict likely consequences. After perhaps several iterations 
of this, the action or action sequence with the best consequence can be selected. It is only recently that 
inroads have begun to be been made in this area. This work is opening up an important area of learning 
where internal models of a limited environment are built through interaction and do not have to be pre- 
programmed into the network. This type of learning will almost certainly be required to solve the common 
sense problem of artificial intelligence because rules for all possible real-world events are impossible to 
predict and code. 
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The majority of neural network research has focused on direct learning to solve specific tasks instead 
of on building internal models. Direct learning involves learning a specific action to solve each task. For 
example, a specific sequence of turns could be learned to reach one specific destination in a maze. A new 
destination, however, would require more training and learning of a new sequence of turns. The alternative 
model-based learning involves building an internal model of the environment and then using this model 
to generate actions to solve many different tasks. For example, a mental map of a maze could be learned 
and used to plan paths to any destination in the maze. 

The concept of internal models as playing an important role in thought has a long history in philoso- 
phy and psychology. In also was mentioned frequently in early discussions of neural network approaches 
[15,247]. Results over the past few years have demonstrated that models of simple maze-like environments 
can be built and used in neural network architectures [253,256]. One new approach is to use backpropaga- 
tion to train an internal network that mimics the input/output behavior of some aspect of interacting with 
the environment. This model can be trained through random exploration. For example, the map from sim- 
ulated motor signals on articulators that produce sound to the produced sound as monitored by simulated 
auditory neurons could be learned by a multi-layer network. The input to this network could be the motor 
signals and the desired output could be the auditory neuron outputs. This network could be trained during 
an exploratory babbling phase. Although this approach has been suggested by many researchers, there is 
only one published report in this area [192]. A similar approach, however, is described in [149,148,215]. 
Here, topological maps are used to learn forward and backward mappings between visual inputs and motor 
outputs for simple tasks. 

A new approach to building internal models by interacting with a deterministic environment is described 
in [220,221]. In this task, an automaton performs actions that affect the environment and is provided with 
sensations that describe the changes in the environment. The goal of the automaton is to construct a 
model of the environment that perfectly predicts the result of any proposed sequences of actions. The 
procedure developed was able to rapidly learn the structure of complex environments. For example, it 
was able to learn the structure of a Rubik's Cube environment with over 1019 global states in only a few 
minutes of computing time. This work represents the beginning of an important line of research that may 
provide bounds on the ability of automata to learn by exploring the environment. This type of research is 
clearly needed to help determine how complex behaviors can be built up over time by interacting with the 
environment. 

12.6    NP COMPLETE COMPLEXITY RESULTS 

Many studies use neural networks with only hundreds of nodes. To fully exploit the power of networks, 
they need to be scaled up to bigger sizes. Complexity theory addresses the affect of scaling on training 
time and also the difficult of problems on sequential Von Neumann machines and on neural networks. 

A number of researchers have examined the complexity of problems when solved using recurrent 
Hopfield-type networks and nodes with two-state binary outputs [1,79,161]. One study [1] demonstrated 
that combinatorial problems, such as the traveling salesman problem, which are NP complete for Von 
Neumann machines, are also NP complete on these neural networks when the number of nodes is polyno- 
mial in the number of cities. Others have explored the complexity of determining whether such networks 
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have stable states [79,161 ]. This problem is solvable in networks with symmetric connection weights but 
NP-complete in networks with asymmetric weights. A good summary of this and other recent work is 
available in [79]. 

Judd has recently presented complexity theory results for multi-layer perceptrons using sigmoidal non- 
linearities [122]. He studied the dependence of learning time on the size of the network for networks 
that are fully connected between layers and proved there was no reasonable upper bound on the training 
time when arbitrary input/output mappings must be learned. The applicability of these results is, however, 
limited. It has already been demonstrated that specific Boolean mappings can be learned in a time that 
scales as a polynomial in the size of the network. In addition, it has been shown that hierarchical networks 
and high-order networks can speed up learning dramatically. Further work is necessary in this area to ob- 
tain results for specific important mappings, for networks with limited connectivity, and for hierarchical 
networks. 

12.7 DATA REPRESENTATION 

Past work on artificial intelligence and neurobiology has demonstrated the importance of data represen- 
tation [18,67,226,268]. This importance has been substantiated by research with neural network models 
which support the rich variety of representations described previously. A good representation can often 
reduce the required training time by orders of magnitude at the expense of a larger network. Presently, the 
study of data structures in classical computer science is based entirely on general-purpose random access 
machines. Current results are thus difficult to apply to neural networks. There is a need to review and 
revamp the study of data structures with specific attention to the constraints, strengths, properties, and 
requirements of machines with highly distributed qualities. 

12.8 NETWORK DESIGN 

Experience with many different types of neural network models and data representations is beginning 
to provide design guidelines. Representations and models differ in many characteristics including: 

• Resource requirements (number of nodes, complexity of nodes, fidelity of nodes, 
robustness of nodes, and number of connections), and 

• Performance limits (retrieval time, learnability, scaling, error recovery, fault toler- 
ance, training protocols, and generalization). 

To support a particular task, a system could use static, cyclic, or dynamic processes; it could be sto- 
chastic or near-deterministic; the signals could be discrete or continuous; and it could be dedicated to that 
task or partially shared with others. There is a need for theoretical analyses of the tradeoffs between these 
requirements and resources and for codification of past empirical studies of different networks. There is 
also a need for more analysis and study of multi-module network structures similar to those observed in 
biological nervous systems. 
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12.9   GENETIC ALGORITHMS 

One new technique that is only beginning to be applied to neural networks uses genetic algorithms 
developed by Holland [107,108]. These algorithms represent an approach to learning modeled after the 
theory of evolution and the concept that the most fit (best performing) characteristics of a model should 
survive in future generations. It requires the initial production of many alternative models for the first 
generation. The performance of these models is evaluated and a new generation of models is formed by 
merging and randomly mutating components of old models. The process is then repeated. 

Genetic algorithms have been applied to a wide variety of problems, including function optimization, 
keyboard layout, semiconductor chip design, job shop scheduling, and communication network design 
[47,108,83]. In the field of neural networks, they have been combined with simulated annealing and 
applied to function optimization problems [3] and also used to design networks to find shortest paths 
[245]. They appear to provide a general, although potentially computationally intensive, approach to the 
problems of network design and choosing a good input representation. 
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13.   NEUROBIOLOGY AND NEURAL NETWORKS 

13.1    INTRODUCTION 

As noted previously, there are two classes of neural network models - those that are intended as compu- 
tational models of biological nervous systems, and those that are intended as biologically-inspired models 
of computational devices with technological applications. These classes are not necessarily mutually ex- 
clusive, but most neural network models fall into one class or the other. In the rest of this chapter, the 
former class of networks will be referred to as neurobiological models, and the latter simply as neural 
network models. 

The goal of neural network research is to design new algorithms and machines that can solve problems 
that require "intelligent" analysis for their solution - i.e., those problems that are very difficult for conven- 
tional algorithms and machines, but are easy for 'intelligent' biological organisms. As suggested by its 
name, the field of neural networks is distinguished from other fields with similar goals - e.g., artificial in- 
telligence - by its general strategy of incorporating features of biological nervous systems into its designs. 
This is an important difference, for it opens the possibility of grounding neural network technology in the 
secure foundation of natural science, and of accelerating its progress through exploiting the knowledge of 
how existing (biological) systems have solved the same problems that it is concerned with. 

This chapter first provides a brief overview of brain physiology, highlighting the great differences be- 
tween neural and conventional computation. The biological foundations of neural network research are 
then presented, demonstrating that neural networks are founded in several key features of the nervous sys- 
tem, but that there is still much to learn from neurobiology. In support of this conclusion, recent advances 
in neuroscience are briefly reviewed, followed by a discussion about how such knowledge could influence 
neural network research. 

13.2    OVERVIEW OF BRAIN PHYSIOLOGY 

The brain consists of roughly 10 to 1,000 billion neurons, cells with distinctive properties found only in 
the nervous system. There are hundreds of types of neurons, although they share a set of common features 
and functions. Figure 2-2 shows drawings of two characteristic types of neurons and a small neural circuit. 

A neuron is characterized by a cell body ~ 30 microns in diameter, and thin ( ~ 1 micron) branch- 
ing extensions called dendrites and axons that are specialized for neuron-to-neuron communication. The 
dendrites receive inputs from other neurons and the axon provides output to other neurons. The neuron is 
imbedded in an aqueous solution of small ions, and its selective permeability to these ions establishes a 
negative electrical potential of some tens of millivolts. 

Neurons receive electrochemical input signals from other cells at small (~ 1 micron) discrete sites 
on their surface, as shown in Figure 13-1. These sites of neuron-to-neuron communication are called 
synapses, and number between 1,000 to 100,000 for each neuron. The input signals are combined in 
various ways, triggering the generation of an output signal by a special region near the cell body under 
certain conditions.  The output signal is a large (~  100 millivolt), brief (~ .001 second), pulse that 
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Figure 13-1.    Three Types of Neuron-to-Neuron Connections Called Synapses. 
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propagates without attenuation down the axon at velocities up to 120 meters/second. These pulses, called 
action potentials, can be produced at varying rates, up to several hundred per second. The axon branches 
many times, delivering the same pulse to all of its synapses. Some neurons generate sustained moderate 
pulse rates for seconds, while others produce short bursts of a few pulses in a few milliseconds. 

It is tempting to think of a neuron, with its pulse-like output, as a digital transistor with two states, pulse 
or no-pulse. However, this analogy requires clock-like synchronization of neuronal pulses on a time scale 
of the minimal inter-pulse interval - a few milliseconds. Such tight synchronization is not found in the 
brain (although brain regions are known to exhibit synchronized firing over larger spatio-temporal scales). 
Typically many pulses must be averaged over tens of milliseconds to determine the average firing rate on 
an axon. Given this need for averaging, it is surprising that humans can respond to complex stimuli in 
fractions of a second when neural elements have computing times of tens of milliseconds. This response 
time indicates less than 100 sequential processing steps. The relative slowness of individual neurons is 
presumably countered by the use of massive parallelism in the nervous system. Parallel processing is an 
emerging field in computer science - however, the style and fine-grain scale of neuronal parallel processing 
is of an entirely different order. 

On the transmitting or pre-synaptic side of the synapse, the pulse releases a specific chemical, called a 
neurotransmitter, that diffuses across a gap (~ .01 microns) to the receiving side of the synapse. On the 
receiving or post-synaptic side of the synapse, the neurotransmitter binds to specific receptor molecules 
anchored in the membrane, opening ionic channels and changing the electrochemical potential. The mag- 
nitude of this change is determined by many factors local to the synapse, such as the amount of transmitter 
released on the pre-synaptic side and the number of receptor molecules on the post-synaptic side. These 
factors can change with time, thus changing the effectiveness or "strength" of the synapse. It is not known 
how many of the thousands of synapses on a cell are strong, or even functional at a given time. Estimates 
of the number of active synapses necessary to cause a cell to "fire" (generate an output pulse) range from 
a few to hundreds. 

It has long been thought that the neuronal input/output function was relatively simple. Synaptic poten- 
tials are spatially and temporally filtered in accord with the cable properties and geometry of the neuron 
and integrated at the cell body. The resulting potential triggers action potentials only when it is greater 
than a fixed threshold. This description is reasonably accurate for a large number of neurons, but modern 
methods have revealed much more complicated mechanisms. Many neuroscientists now think of a neuron 
more as a microprocessor rather than as a leaky capacitor feeding a one-shot flip-flop circuit. In addition, 
there are neurons without axons, synapses that are bi-directional, synapses onto other synapses and onto 
axons, and non-chemical, electrical synapses. 

The neurons of the brain are organized into thousands of discrete structures, each with its own particular 
types of neurons, patterns of neuron-to-neuron connections, and role in brain function. Shapes and sizes 
vary from small globular nuclei a few millimeters in diameter with tens of thousands of neurons, to large 
cortical sheets a few millimeters thick by one meter square with tens of billions of neurons. Large-scale 
information processing tasks, such as speech or vision, are performed by systems composed of many in- 
terconnected structures, each serving a small though specific subtask. This modular architecture is largely 
responsible for past successes in understanding the brain. Carefully controlled experiments can selectively 
study one brain system at a time, untangling its components from those of others, and elucidating their role 
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in the systems function. Figure 13-2 shows a hierarchical block diagram of some of the many processing 
stages identified in the visual cortex of the macaque monkey. 

in 

is 

Figure 13-2. A Hierarchy of Important Processing Stages in the Visual Cortex of the 
Macaque Monkey. The majority of connections are reciprocal and inputs from the eye enter 
VI. 

The growth and formation of brain structures is, of course, ultimately governed by genetic information. 
However, the equivalent of a schematic at the level of individual neurons does not exist. Rather, genetics 
specifies the types and numbers of neurons and the general patterns of connections, but leaves the details of 
neuronal wiring up to the adaptive processes of development. In a similar way, it is generally presumed that 
the acquisition of complex skills such as speech, vision, and movement - achieved with little supervision 
during the first years of life - is due to adaptive processes of neuronal re-organization operating within 
and upon the existing processing structures. 

Present understanding is largely confined to the sensory and motor systems. The structures involved 
with more high-level cognitive functions - such as categorization, memory, decision making, and plan- 
ning - have been tentatively identified, but much is still a mystery. For example, a multitude of specific 
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structures in the visual system that analyze aspects of the elements in an image, such as their color, mo- 
tion and depth, can be pointed out - but there is no knowledge of how those aspects are grouped into a 
representation of the physical objects in the scene, nor how the objects are recognized, categorized, and 
named. However, there are no presently foreseeable scientific obstacles barring an understanding of such 
cognitive functions, although this will likely require a greater interaction between theory, computational 
models, and experiment. 

13.3 BIOLOGICAL FOUNDATION OF NEURAL NETWORKS 

This section briefly discusses the biological foundation of neural networks. More complete accounts 
may be found in recent reviews [13,42,180]. 

Work in neural networks is generally oriented towards achieving rather high-level intelligent functions, 
such as pattern recognition, categorization, and associative memory. The biological knowledge of these 
functions is far from complete, but it is very clear that neurons and synapses are the fundamental devices 
used. It is also clear that these devices are not programmed in the conventional manner; rather, problem- 
specific knowledge is acquired by a learning process which alters the neuronal parameters directly. These 
are the two principal facts of biology that have been applied to neural networks. They are the equiva- 
lent of the transistor and of the logically structured program in conventional computers. In addition, the 
algorithms for calculating the output of a model neuron from its input and the high synaptic connectiv- 
ity used in model networks both derive from biological observations. Modern neuroscience provides a 
great wealth of additional information that has only just begun to be applied to neural network modeling. 
This is because the path from this more recent biological information to the desired intelligent functions 
is relatively tenuous, and the simple ideas of neurons, synapses, and learning, are themselves surprising 
powerful. 

The few principles of neurons, synapses, and learning constitute the biological foundation of most neural 
networks. They are, of course, insufficient to specify a network with the kinds of high-level intelligent 
functions mentioned above. In order to achieve these functions, the biological foundation is supplemented 
with cleverly invented ideas, some drawn from other disciplines, notably physics. This non-biological 
approach is appropriate considering the technological goals of the research, the lack of clear alternative 
biological solutions, and the possibility that future research will verify that such imported ideas are in fact 
biological. However, if biological realism is not sufficiently maintained, neural networks will lose the 
ability to interact profitably with neuroscience. The synergistic relationship between neuroscience and 
neural networks depends on the plausibility of the neural networks as models of biological computation. 

13.4 RECENT RESULTS IN NEUROBIOLOGY 

Neural networks are based on relatively old biological knowledge (ca. 1950), although at the time 
the field began, this knowledge was relatively current. Since then, knowledge of the nervous system has 
mushroomed. The old ideas of the importance of neurons, synapses, and learning are still true - i.e., the 
original ideas of neural networks are still valid, but due to new techniques, a great deal more is known about 
these and other structures and phenomena. In this subsection important biological facts and principles 
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that have been largely ignored in neural network research, and yet could significantly advance neural 
network technology, will be outlined. We will emphasize the critical role played by biologically oriented 
neural network models and theoretical analysis in translating biological knowledge into computational 
technology will be emphasized. Furthermore, the resulting computational models can greatly contribute 
to understanding the complex biological phenomena. 

13.4.1 Neurons 

It is now recognized that single neurons are capable of more functions than the standard one of linear 
summation followed by nonlinear thresholding employed in neural networks. These enhanced functions 
are in the analog domain and arise from nonlinear interactions between dendritic inputs and the elec- 
trical state of the cell. This information is possible because of breakthroughs in intracellular recording 
technology, both electrical and optical. However, this information must be supplemented by mathemat- 
ical models of membrane biophysics and computational models of how the analog functions are used in 
the larger computations of the system. Mathematical models of membrane biophysics are well advanced 
[212,202,138], and are now being extended to the network level in studies of the hippocampus [261]. 
Computational models of analog retinal motion detectors have also been proposed [141 ]. An understand- 
ing and implementation of such analog processes could lead to great increases in the computational power 
of individual nodes in neural networks. The technological feasibility of applying such analog processing 
to neural networks has been demonstrated by the construction of an artificial retina in silicon [181]. 

13.4.2 Synapses 

The molecular mechanisms for changing synaptic efficacy, and hence neuronal signaling, are now be- 
coming known. The work on long-term potentiation (LTP) and the NMDA receptor partially justifies the 
popular Hebb rule used by modelers [153], but significantly extends it as well. It is especially notable 
that the role of these synaptic mechanisms in behavioral learning is also being investigated [248,189]. All 
of these developments promise more powerful learning rules for neural networks - however, biologically 
oriented models relating synaptic changes to network phenomena and behavior are needed to guide the 
experimental work. 

13.4.3 Map Representations 

The importance of highly structured map-like representations in the brain is now very clear, especially 
in the visual system [61,52,237], where the maps are linked together in a modular, hierarchical fashion 
(see also the previous section on early vision research). Neuroethologists are coupling physiology with 
ethological and behavioral studies to pinpoint the role of specific neuronal maps in solving specific real- 
world problems. For example, studies of the bat are revealing how multiple cortical maps, shown in 
Figure 13-3 are used to solve the problem of in-flight echo-location [251]. Investigations of the target 
location system of the barn owl [136,146] have uncovered the presence of "computational maps" [137] 
that construct an acoustic map of space from binaural phase and intensity information. The acoustic map 
is adaptively fused or calibrated with the visual map derived from the retina, and is used to orient the head 

90 



o> 
CO 
to 
o 

RANGE CELL 
MAP 

FREQUENCY/ 
INTENSITY 

MAP 

\   «>: 

i. x 

-63.0-"T-" 

_L X 

Figure 13-3. Range Cell and Frequency/Intensity Topological Maps Measured in the Au- 
ditory Cortex of the Bat. Neurons in these maps are responsive to specific characteristics of 
the returned bat sonar signal. 
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towards targets. Theoretical work could accelerate progress in this field by making experimentally testable 
models of how these maps are constructed and used to control behavior. In return, neural networks could 
gain powerful new map-like paradigms for computation and control. Models with these aims are being 
actively pursued [14,91,148,197]. 

13.4.4   Self-organization 

It has long been known that the sensory systems go through brief critical periods in post-natal devel- 
opment in which the circuits are fine-tuned in response to environmental exposure. The environmental 
and physiological factors essential to this process have been extensively studied in the visual system, as 
reviewed in [277]. Recent work is determining the internal biochemical mechanisms [213] involved. Net- 
work models are needed to explain how all these factors work together to produce the appropriate adult 
circuits, and there has been considerable work in this area (see [43] and the papers cited therein). In addi- 
tion to brief periods of self-organization during critical periods, there is strong evidence for reorganization 
in adult brains as well. This has long been predicted due to the neurological evidence of recovery after 
brain trauma. Recent work in the somatosensory system has demonstrated such processes of recovery at 
the neuronal level [123]. The cortical topographic map of the skin is dynamically regulated by the differ- 
ential use of skin regions. The cortical map territory representing a given skin region will shrink or expand 
as that skin region is stimulated less or more than neighboring skin regions, with consequent decreases 
or increases of sensitivity, respectively. Models seeking to explain how this self-regulation arises from 
neuronal mechanisms are clearly needed, and several have been proposed [58,69,198,219]. Understand- 
ing of neuronal self-organization phenomena could lead to neural networks whose internal representations 
of sensory information would be maximally efficient and adaptive to changes in the environment, as dis- 
cussed in [155]. 

13.4.5    Network Circuitry 

The knowledge of the circuitry of the brain is expanding rapidly due to new tracing methods. Special 
dyes are injected inside a cell, filling it and marking its inputs and outputs for microscopic analysis. It has 
always been clear that there is much more structure in the nervous systems than neural network models 
consider, but now neuroscience is in a position to actually determine what the circuitry is. Studies of 
very young animals have shown that much of the structural complexity of brains does not come from 
learning or synaptic weight modification within globally connected networks, as assumed by most neural 
networks. No matter how much sensory deprivation a developing cat is subjected to, it will still have a 
retina, a lateral geniculate nucleus, a striate cortex and so forth. They might not work very well, but the 
basic information for macroscopic development seems to come from genetic and developmental processes 
rather than environmental sources. It seems unlikely that the clever designs of local brain circuits will be 
discovered solely with the current methods of neural networks, which start with global connectivity and 
change the weights to optimize an input/output mapping. However, this method may provide helpful leads 
in more macroscopic mapping problems, as suggested by recent modeling work [283]. 
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13.4.6 Network Dynamics 

The availability of powerful computers and electronics has enabled the simultaneous recording of elec- 
trical activity at many closely spaced sites in the brain, both electrically and optically. This promises 
to reveal new modes of network dynamics and information processing. However, due to the tremendous 
data rates involved, severe data reduction methods must be employed to solve the "needle in the haystack" 
problem. Networks models are needed to suggest what the important spatial and temporal scales might be 
in order to guide the data reduction process and the experimental design itself. Model based data reduction 
methods have been extensively applied in the olfactory bulb by Freeman [70] and are under development 
by Shaw for the visual cortex [242]. 

13.4.7 Learning 

Neurobiologists are extensively exploring the physiological correlates of learning in higher mammals 
[273,262]. The response properties of single cells can now be determined while the animal is awake and 
learning a task or an association between stimuli. Pharmacological agents can be administered to block or 
aid the learning-related changes. These techniques, as well as others mentioned above, are determining 
the neuronal bases of learning and memory. Learning, of course, is one of the key features of neural 
networks. Most network models use a form of supervised learning in which the correct outputs for a large 
set of inputs is already known and is used to set the connection strengths to achieve the desired input/output 
mapping. However, there are equally important learning tasks that cannot include an omniscient teacher, 
such as any situation in which novelty is present. Biological research can aid neural networks in the design 
of such unsupervised learning paradigms (see the previous chapter on models of classical conditioning), 
and network models are expected to be an essential part of the discovery process itself. Recent efforts 
along these lines, in which there is a closed feedback loop between network modeling and experiment, 
has suggested a new mechanism for categorical memory [165]. This new memory model, unlike most 
neural network classifiers, explicitly uses time in its representation of stimulus categories. The output 
response pattern evolves in time, at first giving a classification response, followed by more and more of a 
stimulus-specific response. If two stimuli are presented at the same time, the output oscillates between the 
two correct outputs, thus solving the superposition problem that plagues categorizers which exclusively 
use spatial representations. Of course, for problems with many stimuli, further attentional methods are 
needed, as discussed below. 

13.4.8    Attention 

Animals are able to make sense of their complex sensory environments because they can attend to just 
those features or objects that are important to the task at hand, thus serializing their analysis of the parallel 
information flow provided by the senses. This essential function has been extensively studied by psychol- 
ogists for the last 20 years, and is now under neurophysiological investigation (see [208] and the articles 
cited therein). The ability to attend to one of many objects seems especially remarkable when considering 
the parallel and distributed manner in which objects are represented in the nervous system. Even within a 
single modality, features of a single object are represented on a multitude of neural structures, and yet the 
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features of multiple objects are not mixed up with each other (the apples in a basket of oranges are seen 
as red and not orange). The problem of attention is thus related to the problem of sensory fusion. 

13.4.9    Organizing Principles 

Mountcastle has proposed a general organizing principle for information processing based on the mod- 
ularity of brain structure and function, and the evidence that groups of neurons, rather that single neu- 
rons, are the irreducible processing elements 1190]. Edelman has put forward a complementary theory of 
higher brain function that posits that the brain is a selective system, sharing principles in common with the 
immune system and Darwinian evolution [56]. This theory argues that the paradigm of information pro- 
cessing that is implicitly, if not explicitly, employed in both neuroscience and neural network research is 
an inadequate paradigm for understanding brain function and for building truly intelligent machines [57]. 
These organizing principles are currently very controversial within neuroscience itself - however, neural 
network models based on these principles have been developed [121,68,240,48,198], demonstrating new 
computational ideas and stimulating fresh insights into the theories. 
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14.   CONCLUSIONS CONCERNING ADAPTIVE KNOWLEDGE PROCESSING 

The Adapative Knowledge Processing Panel of the Neural Network Study has drawn a number of con- 
clusions about the field of neural networks and its needs and prospects. These are delineated below. 

The neural network community needs sponsorship of basic research rather than funding of large- 
scale demonstrations of neural network capability. The field of neural networks is young but has good 
potential. Much basic research is required before new applications should be expected in the fields of 
robotics, vision, and speech. 

The development of advanced neural network models should be encouraged. Researchers should 
explore more complex multiple-module neural network systems with many subnetworks. These systems 
should explore the use of hierarchical training using both unsupervised and supervised learning. They 
should address the problems of data fusion, selective attention, and both recognition and production of 
temporal pattern sequences. More complex models should not limit nodal processing elements to use 
only simple summations followed by nonlinearities. More biologically-plausible nodes should be studied. 
These nodes could exhibit complex temporal behavior and operations such as multiplication or shunting. 

The development of improved learning algorithms should be encouraged. Researchers should ex- 
plore techniques to automatically discover input features that provide good classification. Input features 
limit the performance of any following classifier or higher-level processing. Researchers should also at- 
tempt to develop faster techniques for supervised and unsupervised learning and learning techniques that 
work well when error feedback is noisy or delayed. They should, in addition, explore algorithms that learn 
to develop and use internal models of the world. Such models can be used, for example, to predict the 
effect of possible environmental interactions. Researchers should explore, too, the benefits of different 
types of data representations for different tasks as well as algorithms to recognize and predict temporal 
sequences. 

Theoretical work in neural networks should be encouraged. The development of the field of neural 
networks requires further basic theoretical work. This includes research on complexity theory to determine 
the scaling properties of different algorithms and work to determine performance bounds on adaptive 
algorithms for different tasks. It also includes work that demonstrates how the complexity of a model 
(size and number of parameters) should be adjusted to match the amount of training data provided. Theory 
should also be developed to study improvements in learning that can be provided by modularizing a task 
and by selecting a data representation carefully. The behavior of training algorithms in non-stationary 
environments should be studied, as should the fault tolerance of different network architectures. Finally, 
theorists should study the stability and dynamics of network architectures with feedback connections. 

Work in vision-oriented applications of neural networks should be encouraged. Image recognition 
is an important application area for neural networks. The neural network approach, however, is not a new 
paradigm in the field of machine vision. Here, massive parallelism is clearly necessary to obtain any kind 
of near realtime throughput. Many researchers are thus currently developing and using algorithms that 
utilize fine-grain parallelism and/or are modeled after early visual areas in the brain. Common databases 
do not exist, however, and should be developed as part of any new work in vision. Some of the important 
problems that should be addressed by vision work include: 
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• Detecting and fusing features from early vision (edges, color, texture, motion, depth), 

• Scanning of an image, and obtaining translation, rotation, and size invariant repre- 
sentations of elements of a scene, 

• Forming a stable body-centered internal representation of the external world. 

Work in speech recognition should be encouraged. Speech recognition is another significant ap- 
plication area for neural networks. The neural network approach represents a new paradigm for speech 
recognition researchers, massive parallelism is clearly required to match acoustic inputs to 50,000 words 
in real time as humans do, and the performance of current speech recognizers is well below that of hu- 
mans. Initial work applying neural networks in this area has been promising. Although the computational 
power required for speech recognition is substantial, it is much more tractable than vision and allows more 
extensive simulation studies. In addition, some common speech databases currently exist which could be 
used as benchmarks. 

A solution to the speech problem will help in other areas, such as vision, where recognition hi- 
erarchies exist. Focusing on speech recognition also implies finding a solution to the problem of 
recognizing and storing sequences of temporal patterns. This is a major unsolved important prob- 
lem in the field of neural networks. Solutions to this problem would find applications in the areas of 
robotics and vision. Other important problems that should be addressed include: 

• Constructing sub-word, and word models automatically without excessive supervi- 
sion, 

• Developing better acoustic feature extraction, 

• Developing rapid search techniques, 

• Providing speaker independence, 

• Providing good performance for continuous speech, and 

• Learning and using internal models of the world. 

Work in robotics should be encouraged. Robotics is a still another major application area for neu- 
ral networks. Adaptive neural networks represent a different paradigm for robotic researchers that has 
not been thoroughly exploited. Most robots are pre-programmed to perform a specific task and are not 
adaptive. Initial work exploring adaptive neural network algorithms in this area has been promising. In 
addition, initial work on automata that coordinate eye and hand movements suggest some potential so- 
lutions to the problems of motor coordination and fusion of sensory data. Work in this area also would 
benefit by the specification of specific graded tasks which could be used as benchmarks. Some of the 
important problems that should be addressed by robotics work include: 

• Fusing inputs from multiple senses, 

• Adapting to variable loads, 
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• Planning trajectories, 

• Avoiding obstacles, 

• Selecting from among several possible tasks or objects, and 

• Learning goal-oriented sequences. 

Exploring the capability of simulated automata that "learn by doing," initially using small simulated en- 
vironments. Applications of robotics research include the development of many types of autonomous con- 
trollers that can operate in those types of uncertain environments that exist in many military applications, 
safe controllers for cars and other vehicles, aids for the physically handicapped, and factory automation. 

Neural network models should be develop and tested on real data. Following initial development 
and analysis, all algorithms should be simulated as soon as possible and both tested and further developed 
on real data. This will require the creation of graded tasks and databases in the areas of vision and robotics. 
A number of shared databases already exist for speech recognition. 

Sufficient computational power should be provided for neural network research. The development 
of adaptive learning algorithms with large databases leads to heavy computational requirements. These 
should be met by providing computer facilities for simulation. Ideally, these facilities should be on site 
near the researchers. 

Interdisciplinary cooperation should be encouraged. The held of neural networks uses theoretical 
results and insights from many research areas. Those who sponsor neural network research should en- 
courage interactions between modelers, neurobiologists, engineers, cognitive scientists, physicists, math- 
ematicians, computer scientists, and others. 

Neural network research efforts should focus on computational models. New computational mod- 
els should not be justified by solely by neurobiological inspiration or ability to match psychophysical 
data. New models must offer improvements over existing algorithms. A new algorithm could have re- 
duced computational complexity, or perform better (more accurate, shorter training time, faster operation, 
more capable, or more fault tolerant) or be easier to implement than existing algorithms. 

The dissemination of information about neural network research should be encouraged. This is 
a new field covering many different areas. Information is currently scattered over many journals. Joint 
conferences should be encouraged, as well as review articles and books that can be understood by an 
intelligent reader. 
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1.   OVERVIEW 

1.1    OBJECTIVES OF THE TECHNOLOGY ASSESSMENT PANEL 

The DARPA Neural Network Study attempts to answer the basic questions concerning the technology 
of neural networks, such as "Should we be interested in neural networks, and if so, why?" and "What 
should be done in order to reap the potential benefits of neural networks?" 

To answer such questions, it is necessary to determine what it is that neural networks do, how well 
they can do these things, and even more specifically, how well they can do these things compared to the 
standard ways of doing them. It is necessary to put neural networks in context with today's available 
technology by comparing and contrasting neural networks with the current technological alternatives. In 
the case of a new and immature technology, it is critically important to attempt to project into the future 
to determine its potential benefits, even though what is currently achievable may not be very interesting. 
If, on the basis of current assessments and future projections, neural networks appear to offer significant 
advantages, then goals can be set for the new technology and a program can be planned to achieve those 
goals in some reasonable time-frame, commensurate with available support. 

Therefore, the objectives of Panel 1 of the Neural Network Study, the Technology Assessment Panel, 
(originally titled in the Study's Terms of Reference 'Intelligent Systems - Status and Expectations') are 
these: 

• To provide a reading of the current status of neural networks relative to other tech- 
nologies, and 

• To try to make projections of what might be expected from neural networks in the 
future, given some investment in research and development efforts. 

1.2    APPROACH TAKEN IN THE COMPARISON STUDY 

In order to compare neural networks with other technologies, the Panel first put neural networks in 
the context of information processing technology, and then compared neural networks with alternative 
approaches to information processing. The competing technologies considered here include: 

• Signal processing, 

• Communication and information theory, 

• Adaptive control systems, 

• Pattern recognition/classification, 

• Artificial intelligence (AI), 

• Computer science, and 
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• Optimization theory. 

There are many applications and many different approaches to information processing that must be 
considered in evaluating the worth of neural networks. The Panel has found applications where neu- 
ral networks are superior to standard approaches and other applications where they are not competitive. 
Thus, at this stage in the development of neural network technology, it does not appear to be possible 
to draw general conclusions regarding the capabilities of neural networks relative to other approaches to 
information processing. The stance taken in this Study was, therefore, to undertake a case-by-case evalu- 
ation of neural network applications, comparing them with standard approaches in an effort to assess the 
current capabilities of neural networks in each of the application areas and to make projections on how 
well they might do in the future. 

An important constraint on this approach was the need for quantitative performance data for both neural 
networks and alternative approaches to a problem, where the experimental conditions and data were the 
same for all approaches. It proved to be difficult at this time to find papers with such careful comparison 
data. In a time-constrained Study such as this one, the Panel found it impossible to do detailed analysis to 
generate its own comparison data for applications. The neural network applications studied in this section 
are therefore largely determined by the availability of comparison data. 

Comparisons made in the context of applications must necessarily be done at the "black box" level - i.e., 
with respect to macroscopic performance measures and characteristics - because comparison at a detailed 
level with such a diversity of information processing technologies would not be practical or useful. Hence, 
in comparing a neural network with some other system for a particular application, the relevant questions 
are: 

• How well does the neural network perform with respect to the competition, using the 
standard performance measures applicable to the specific application context being 
considered? That is, does the neural network get the right answers? Often enough? 

• How quickly does the neural network get its answers? What is the response time of 
the neural network compared to the alternative approaches? 

• How reliable can the neural network implementation be? Will it be suitable/unsuitable 
for applications involving stressing physical environments for equipment? Will it 
require specialists to maintain the equipment regularly? 

• How quickly can neural network systems be developed, including obtaining infor- 
mation on which to base system designs, writing software, formulating and analyz- 
ing models, designing hardware? 

• What physical constraints (size, weight, power consumption) can neural network 
systems meet? 

• How much will neural networks cost relative to other approaches? 



Given the Panel's interest in assessing the current capabilities as well as the potential benefits of neural net- 
works in the future, the comparison studies should measure the differences between neural networks and 
other approaches to assess where neural networks are today, but also indicate how much neural networks 
would have to improve to overtake the other approaches. 

1.3    CAVEAT EMPTOR 

The assessment of future capabilities of a new field of technology has been attempted many times in 
the past, and almost always with abysmally poor results - especially in fields which are lacking in a sound 
overall theoretical framework. The development of digital circuit technology progressed from solid state 
technology to MSI, LSI, and on to VLSI technology much more rapidly than anyone projected, while the 
field of artificial intelligence (AI) progressed much more slowly than workers projected in the mid-1960s. 
The field of superconductivity moved very slowly since the first discoveries in the 1950s, but recently has 
exploded in an astounding manner with discoveries that were once believed impossible (and perhaps not 
pursued because of that belief)- 

This Part of the Neural Network Study's Technical Report must be viewed in the context of technology 
assessment and projection, with the acknowledgement that this is a very risky business. And in this brief 
examination, generalizations and projections must be made on the basis of a limited set of applications 
for which there exist sufficient quantitative data for careful comparison of neural networks and other 
approaches. But such projections are an essential part of any effort which attempts to determine the value 
of a new technology and how to reap its benefits. The work of the Technology Assessment Panel is not 
marketing and sales - that is, merely to provide hyperbole to maintain interest in the rest of the Report 
- but to actually let the cards fall where they may in making an objective assessment of neural networks 
and their potential for DARPA and the nation as well. 



2.   METHODOLOGY 

2.1    NEURAL NETWORKS AS INFORMATION PROCESSING SYSTEMS 

Neural networks have been defined in the beginning of this Report in a manner which clearly distin- 
guishes them from other technologies. Neural networks are, among other things, information processing 
systems, and it will be useful for this Panel's comparative analysis here to discuss them in this context. 

An information processing system (IPS) processes inputs to extract information from them, and produces 
outputs corresponding to the extracted information. 

The functional specification of the transformation between inputs and outputs of an IPS is given by 
what is called an algorithm. The sense in which 'algorithm' is used here is somewhat broader than the 
computer science usage in that any type of specification is accepted, as long as it is well-defined. This 
would include mathematical formulas, sets of equations and constraints, rules, a computer program, etc. 

The physical realization of the processing mechanism that runs the algorithm is referred to as the im- 
plementation of the IPS. For purposes of this comparative study, it will be useful to discuss IPSs on these 
two levels - the algorithmic level and the implementation level. 

From the definition of an IPS, it is clear that an alternative view of an IPS is as a mapping from the space 
of all possible inputs to the output space. This view is sometimes helpful in providing insights into what 
is happening during the processing operations. This view is especially useful in characterizing pattern 
classifiers (see the discussion of multi-layer perceptrons in Part II, Chapter 4 of this Report). Associative 
memory problems can also be viewed this way. A learning system can be viewed as one which formulates 
the mapping function from the training example presented to it. 

IPSs are implemented in a variety of technologies. To illustrate: 

• Signal processors may be built of analog and/or digital circuits, or even optical com- 
ponents, and frequently include programmed microprocessors; 

• Pattern classifiers, optimization algorithms and AI systems are most often realized 
in the form of a computer program running on a digital computer; 

• A robotic manipulator/controller can be realized as a digital computer, as an analog 
control system, or as a hybrid; 

• An adaptive controller is often realized using analog computer techniques. 

Although neural networks are implemented most frequently today as programs running on digital com- 
puters, they can also be realized using digital circuits and chips, and more recently, as analog circuits and 
chips, as well as with optical processing. Biological organisms represent yet another type of implementa- 
tion of neural networks, in so-called wetware. 

An interesting progression can be seen in the development of computers, starting with analog computers, 
then to programmable general-purpose (uniprocessor) digital computers, to parallel digital computers with 



a flexible interconnection network between processing elements (PEs), to data flow machines which match 
topology to algorithm for maximum concurrency (for a particular class of processing problems). 

To put some of the basic concepts in perspective, and thereby give a better feeling for the "style" of 
information processing performed by neural networks, Table 2-1 compares parallel digital computers, 
analog computers, biological systems and an analog realization of a neural network. The key differences 
that emerge from this Table are that neural network implementations are based on: 

• A small number of different types of simple processing elements (PEs); 

• Simple representation and communication of data in terms of physical quantities, 
such as voltages, charges, concentration of certain molecules, etc.; 

• Adaptive PEs that each can store a small amount of data; 

• Fine-grain parallelism in a network of many simple PEs; 

• A network that directly implements the algorithm and thus matches the algorithm 
exactly, giving maximum parallelism; 

• Training the network to adjust algorithm processing parameters to give the desired 
responses as well as to compensate for inaccuracies and faults in the hardware aris- 
ing during fabrication. 

Briefly, neural networks embody (a) the use of simple representations and PEs as in analog computers, and 
(b) the matching of topology to algorithm as in analog computers and data flow machines - resulting in 
fine-grain parallelism on a massive scale. However, the use of adaptive elements to simultaneously realize 
a computational capability integrated with a distributed data storage system is unique. The adaptation of 
the processing with experience is also not exploited in other forms of information processing to the extent 
that it is, or could be, in neural networks. 

One can view neural networks as massively parallel analog computers implemented in analog VLSI, 
but using simple, adaptive functional elements. 

Neural networks incorporate a combination of certain features of various types of implementations of 
IPSs together with some unique features - the sum total of which results in significant advantages for 
information processing. Massively parallel algorithms can provide rapid processing if implemented on an 
appropriate processing architecture, especially one which is matched to the algorithm. The use of only a 
few different types of simple processing elements and simple representations facilitates fabrication of such 
massively parallel systems. The adaptive feature of the PEs also allows element inaccuracies to be com- 
pensated for during a training phase. Massively parallel algorithms that deal with noisy inputs are usually 
tolerant of internal "noise" caused by fabrication imperfections. Training the system to adjust algorithm 
parameters and to compensate for fabrication imperfections also provides very important advantages in 
dealing with the detailed knowledge necessary to build the system; this issue will be discussed in some 
detail following a quick description of artificial intelligence. 



DATA 
PARALLEL FLOW ANALOG NEURAL 

COMP MACH. COMP. NETWORK 

MATCH  OF MACH.  ARCH.  & ALGORITHM PROBLEM GOOD PERFECT PERFECT 

DATA REPRESENTATION DIGITAL DIGITAL ANALOG ANALOG 

TYPE  PROCESSING  ELEMENT ALU ALU ANALOG SIMPLE ANAL. 

SINGLE vs MULTI-FUNCTION  PEs MULTI MULTI SINGLE SINGLE 

TIME: CONTINUOUS vs DISCRETE DISC. DISC. CONT. EITHER 

PARALLELISM:  SCALE - 1000s ~1000s - 100s 1  TO  10"6 

GRAIN SIZE TASK OPER. OPER. FINE GRAIN  OPS 

DATA STORAGE BANK BUFFERS ANALOG IN  EACH  PE 

COMMUNICATION: TOPOLOGY GEN'L SPECIAL ALGO. ALGO 

LINKS MSGS ARGS VALUES VALUES 

ELEMENT ADAPTABILITY NO NO NO YES 

ALGORITHM  SETUP PROGRAM GRAPH WIRE UP WIRE & TRAIN 

Table 2-1. 

Comparison of Several Types of Implementations of Information Processing Sys- 
tems 



2.2    ARTIFICIAL INTELLIGENCE: A BRIEF REVIEW 

Artificial intelligence is commonly described as a field that seeks to make computers more useful by 
having them solve problems which require "intelligence." 

2.2.1 What Is AI? 

It is a higher goal of AI to understand intelligence itself in humans as well as in other organisms, and to 
be able to exploit such understanding to build "intelligent systems" - i.e., systems that do intelligent things. 
As a discipline, then, artificial intelligence consists of a collection of techniques, models, algorithms, and 
programs; these have been developed since the mid-1950s. 

Among some of the particular aspirations of AI researchers are: 

• Medical diagnosis by computer, with prescription of therapy; 

• Machine translation of natural languages; 

• The "voice typewriter" - a machine that converts spoken language directly into 
typewritten form; 

• Discovery and demonstration of proofs for new mathematical theorems; 

• Machine vision - interpretation of scenes based on images produced by a camera or 
other sensor. 

Clearly, understanding how to build systems which accomplish the tasks described above would lead to 
many valuable, practical applications, and they have been aspirations of AI for many years; they remain 
today, however, areas of research rather than accomplished feats. 

2.2.2 The Methodology of AI 

The problems discussed above are clearly very difficult and involve far more than the ability to program 
a computer. A great deal of effort has been expended in trying to understand how people accomplish 
these tasks. Psychology, cognitive science, neuroscience, and biophysics have all made important basic 
contributions to the efforts of AI workers to solve problems like the ones cited above. AI has also benefitted 
from the work of electrical engineering, computer science, mathematics, and system theory. These fields 
have all provided the technology base on which AI has attempted to build new approaches to difficult 
problems. 

In the early work, problems were characterized as systems of constraints and effort was focused on 
finding solutions satisfying the constraints by searching the solution space. The size of the solution space 
grew so rapidly with the complexity of the problems, that this approach was engulfed in "combinatorial 
explosion." Pruning the search tree was attempted by use of heuristics - rules that applied to specific 
situations in the search process that could eliminate many search paths without having to evaluate them. 
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Indeed, so useful became the widespread application of rules to guide the search of the solution space 
that the emphasis in AI methodology gradually shifted from an effort to find general principles of problem 
solving effective for many problems to the use of domain-specific knowledge in the form of rules or 
packets of knowledge called frames. Successes with this approach have spawned a subfield in AI called 
"expert systems" in which the problem-solving behavior of human experts in narrow problem domains 
is studied to capture domain-specific knowledge that allows a computer to perform as well as the human 
expert. 

AI today does not have a theoretical framework or models that guide the problem-solving activity. It is 
largely experimental in that most AI projects result in the writing of a computer program to demonstrate 
certain approaches to problems. 

2.2.3    What Is AI Working On Today? 

The list of problems that are currently being addressed in AI is very long; what they share is the need 
for intelligence to derive a solution. Among present AI interests are: 

• Computers to aid physicians in medical diagnosis; 

• Continuous speech recognition, independent of the speaker; 

• Machine translation of natural languages; 

• Computers that are capable mathematical assistants to engineers; 

• Machine vision systems for robots and interpretation of sensor data; 

• Machine reasoning and planning systems, including automatic computer program- 
ming systems; 

• Expert systems for a wide variety of applications, including - 

- Decision-making systems, 

- Control systems, and 

- Tutoring systems; 

• Hardware and software tools to facilitate development of AI systems. 

These are certainly closely related to the initial list of AI aspirations noted earlier, the continued presence 
of these problems does not mean that workers in AI have not accomplished anything. On the contrary, 
each of these problem areas is a field of research in its own right involving accomplishments on many 
levels before the claim can be made that the field is no longer of research interest. 

For instance, in the case of the "voice typewriter," a machine commercially available today can convert 
spoken words to typewritten form with greater than 95% accuracy, and for vocabularies of many thousands 
of words. But the words must be isolated - i.e., spoken with an interval of silence between each one - and, 



furthermore, each system can "understand" the speech of only one person. That is, speaker-independent 
recognition of continuous speech has not yet been achieved except for very limited contexts, like spoken 
digit strings. But a great deal has been accomplished in the area of the voice typewriter. 

To further illustrate, consider yet another example. Machine vision technology is not currently able 
to analyze and interpret a complete scene from images, except in special limited contexts. But object 
recognition by machine is advanced enough to allow mobile robots to avoid obstacles while navigating 
to an objective. Similarly, robots in manufacturing plants can find and control manipulators to pick up 
desired objects (e.g., parts on an assembly line). 

Similar experiences can be cited for all of the other major problem areas in AI, all of which would 
indicate that tremendous progress has been made since the birth of AI. 

2.2.4    How AI Relates to Neural Networks 

The history of neural networks has been intertwined with AI since the inception of both fields. In the 
late 1950s, when a group of scientists turned their attention to attempting to build intelligent systems, two 
different approaches emerged: one focused on how the brain did things, the other concentrated on what 
the brain did irrespective of how it was accomplished biologically. 

In those early days, progress came slowly to both approaches, but the second approach - later dubbed 
artificial intelligence - became favored over the first approach - neural networks - for several reasons: 

• Rapid advances in computer technology provided flexible and powerful tools for 
testing models and system concepts in software. This capability was put to good 
use by those working on the artificial intelligence approach because . . . 

• There was a paucity of knowledge about the brain and how it works, and obtaining 
the necessary detailed knowledge was difficult; meanwhile, psychology was ex- 
panding into new and interesting areas of cognition and fed the appetite for knowl- 
edge to encourage the AI approach. 

The neural network approach was, of course, pursued continuously over the last 30 years, but at a 
lower level of effort (and funding) compared to AI. In the early 1980s, several key papers - most notably 
those of Hopfield, Kirkpatrick, Hinton, Grossberg, and Rumelhart - spurred a revival of interest in neural 
networks. This interest has continued to expand through the 1980s and has led to the Study whose findings 
are delineated in this Report. 

It is clear that both AI and neural networks are addressing the same sort of problems, and this should 
come as no surprise given their common roots. But it is also abundantly clear that AI and neural networks 
still approach these problems from very different perspectives. 

AI seeks to exploit knowledge in many forms to solve complex problems - sometimes even acquiring 
this knowledge by observing the problem-solving behavior of human beings. The AI approach, largely 
experimental, implements systems in software, usually on powerful LISP-based workstations. The topic 
of learning has not been considered in the mainstream of AI research until recently. 
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Workers in the neural network arena, meanwhile, still seek to build structures inspired by biological 
systems - employing many simple, neuron-like processors operating in parallel - and adapting their be- 
havior to improve system performance. Advances in neuroscience and computers fuel the neural network 
approach to developing intelligent systems, which has gained tremendous popularity in the last five years. 
The neural network approach to systems considers learning and parallel implementations from the outset, 
which seems to lead more naturally to special-purpose hardware implementations. The prognosis con- 
cerning the outcome of the "competition" between AI and neural networks is one of the major focal points 
of this Report. 

2.3    NEURAL NETWORKS AS KNOWLEDGE-BASED SYSTEMS 

Consider an Al-based information processing system (IPS) that is used to do medical diagnosis. The 
symptoms of a patient and the results of laboratory tests are the inputs that are entered into the system, 
and it produces a list of probable diseases. This "expert system" implementation of AI techniques uses 
rules of the form "IF ..., THEN ...", which aid in establishing a diagnostic strategy as well as recognizing 
significant medical conditions. 

The fact that such a system contains knowledge that it uses in processing its inputs is clear because of 
the explicit knowledge representation in the form of rules. There is no question that such a system can 
perform medical diagnoses much better than humans who have not acquired any more than the average 
amount of medical knowledge of the general public. Such a medical diagnostic system is certainly an 
IPS, but with embedded knowledge that is needed for it to perform its intended function. We refer to such 
systems as "knowledge-based" systems. 

When a knowledge-based system has more knowledge than a human in a certain area of expertise, the 
human may consider the system to be "intelligent" - hence the usage of the term "intelligent systems" 
has recently arisen from the work of AI. If the human studies the system until he/she understands how 
to process its inputs to obtain the correct outputs, then he/she has acquired the knowledge contained in 
the system. (He/she may no longer consider the system to be "intelligent," even though the system itself 
has not changed in any respect; the only changes that occurred were, in fact, the acquisition of certain 
knowledge by the human being.) 

What is the nature of knowledge that is embedded in these "intelligent," or knowledge-based, systems? 
The human being without the expert knowledge cannot produce the correct response to inputs - that is, 
there is uncertainty in the mind of the human before he/she has acquired the expert knowledge, and no 
uncertainty about how to process inputs correctly after acquisition of the expert knowledge. This reduction 
in uncertainty corresponds to an "information gain" on the part of the human observer. Knowledge thus 
is equated to information in the usual information theoretic sense of "that which reduces uncertainty." 

Consider another IPS which is hard-wired to process a vector input to determine which of a number 
of classes it belongs to. The vector could be composed of samples of the output of a communication 
receiver containing signal-plus-channel noise, or a feature vector in a pattern classification context. The 
processor now consists of digital circuits implementing certain logic functions to find, in the first case, the 
most probable transmitted waveform, and in the second, the name or label of the class to which the input 
belongs. 
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Is this a knowledge-based system? If a casual observer cannot do the classification task, then the system 
clearly uses knowledge or information that the observer does not. The knowledge in this case is in the 
structure of the hard-wired hardware implementation, and it is not so explicitly recognized as it was in the 
case of the expert system, but it is there nevertheless. 

In building "intelligent," or knowledge-based systems, the acquisition of the knowledge is a critical 
part of the job. In certain fields, such as system theory or information theory, experimental data from the 
problem domain is studied and models are formulated and analyzed, leading to system designs which are 
then implemented. The knowledge has been acquired by the engineers and scientists and embedded in 
the system implementation. On the other hand, the class of problems addressed by expert systems were 
impractical to pursue in this same manner because of the difficulty of modeling and analysis. Instead, 
the problem-solving process of human experts is observed in an attempt to "capture" the knowledge of 
these experts. Then this domain specific knowledge is coded in the form of rules or frames and put into a 
computer program which can make use of it in this form to solve problems in this domain. 

Biological systems take yet another approach - that of passing knowledge of the general structure of a 
successful IPS to offspring via genes, and also by acquiring knowledge from direct experience in learning 
to survive in their natural environment. 

Trainable neural networks are very similar to biological systems from the point of view of knowledge 
acquisition. The approach taken to acquire the knowledge to build a neural network is usually very dif- 
ferent from the approach of system theory or AI, and it can have a marked effect on the total effort needed 
and the final cost of the system. One important issue that the Technology Assessment Panel includes in 
its comparisons of neural networks with other conventional technologies is that of knowledge acquisition 
and embedding. 

2.4    MEASURES USED IN COMPARING NEURAL NETWORKS WITH OTHER TECHNOLO- 
GIES 

The comparative study undertaken by the Technology Assessment Panel will consider certain problem 
domains, or application areas, for which neural networks appear to offer some advantages. It is important 
to differentiate between several different types of neural network implementations - such as an algorithm 
running on a digital computer, a simulation of a neural network hardware design, an application-dependent 
hardware design implemented in digital, analog or optical technology - and a biological wetware imple- 
mentation. For each application area considered, one or more neural network approaches for a particular 
application will be compared to the best known conventional approach to this application. The measures 
used to compare the different approaches are as follows: 

• Accuracy (How well does each system do the job?) 

• Response Time (How long does each system take to produce answers, responses?) 

• Knowledge Acquisition/Embedding (How long does it take to acquire the knowl- 
edge to design, build, adjust, and test the different systems?) 
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• Reliability (How robust are the different systems to changes in the environment 
and/or the hardware implementation?) 

• Physical Characteristics (size, weight, power consumption, etc.) 

At this stage in the development of neural networks, it is not possible to assess reliability in the sense 
intended above because there are so few systems actually implemented in hardware. Furthermore, at this 
point the robustness of various processing algorithms to element defects and failures has not been studied 
theoretically in any detail. Therefore, assessment of reliability would amount to assessing the reliability 
of the various digital computers used to run neural network algorithms. 

A similar point should be made relative to physical characteristics. This Panel is not interested in as- 
sessing the compactness of the various digital computer designs used to run neural network algorithms. 
The Panel will, therefore, limit its comments about physical characteristics to pointing out those applica- 
tions for which compact special-purpose hardware has been demonstrated or is close at hand. Reliability 
will not be discussed at all. 

Another item of interest is the cost of a fielded system. Since there are few neural network systems 
that have been manufactured, and many of the examples to be discussed are far from manufacture, cost 
can only be estimated very roughly on the basis of the size and complexity of various implementations of 
neural networks, and will thus not be a prime measure in the following comparisons. 
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3.  COMPARISON OF NEURAL NETWORKS WITH OTHER TECHNOLOGIES 

3.1    NEURAL NETWORK APPLICATIONS USED IN THE COMPARISON STUDY 

Neural networks have been applied to a fairly wide variety of information processing problems, with 
those applications related to processing sensor data being the most common. This may be due to the fact 
that there is more biological inspiration here, since sensory systems are perhaps the best understood parts 
of biological nervous systems. The Technology Assessment Panel's set of neural network applications for 
study and comparison thus include many in the areas of pattern recognition, signal processing, machine 
vision, and speech. In addition, motor control applications from robotics are also included for their novel 
and generally simplifying approach to manipulator control. 

The most mathematical applications are in the area of optimization theory, where models from physics 
have been found to be useful in finding good approximate solutions to problems involving minimization 
of a cost function under a set of constraints. Rarely have neural networks been used to solve problems (of 
any complexity) requiring reasoning and inference or complex mathematical calculations, such as testing 
very large numbers for primality. 

In one sense, a comparison study is easy since any example applications that are demonstrably better 
than conventional techniques will establish the value of the new technology. The difficulty is finding ex- 
amples that have been studied thoroughly enough to provide the data that establishes relative performance 
clearly and objectively - especially in a field where workers are still trying to prove the worth of their 
work. 

One view holds that if the new technology were clearly superior to conventional approaches, then the 
workers would go to great pains to generate the data which would unequivocally demonstrate their claims. 
Such papers are very difficult to find in the field of neural networks today. In fact, the most difficult 
part of this comparison study has been finding papers and reports with enough data to allow quantitative 
comparison with the competing approaches. This has limited the Panel's choices of examples to present 
here, but in a sense, it puts the current state of the neural network field accurately in context. There are 
few examples available today that are treated in enough detail to make an accurate assessment of the 
technology with respect to conventional approaches. 

The neural network applications used in this comparative study are listed in Table 3-1. Each of the 
neural network applications noted in this Table will be compared with alternative, more conventional 
approaches to the same problem. 
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• OPTIMIZATION PROBLEMS 

1. Traveling salesman problem (TSP) 

2. Associative memories 

• PATTERN RECOGNITION/CLASSIFICATION 

1. Tactical ground target recognition using laser radar imagery 

2. Sonar discrimination problem 

3. Smart weapon application 

• ROBOTIC CONTROL APPLICATIONS 

1. Learning   nonlinear   mappings   for   manipulator   control 
(CMAC) 

• SIGNAL PROCESSING 

1. Estimation of the shape of an unknown waveform corrupted 
by noise 

• SPEECH APPLICATIONS 

1. Text-to-phoneme translation for speech synthesis 

• MACHINE VISION APPLICATIONS 

1. Early vision: image segmentation 

2. Learning a color model from examples 

3. Visual motion processing 

Table 3-1. 

Neural Network Applications Used in the Comparison Study 
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3.2 THE TRAVELING SALESMAN PROBLEM 

The traveling salesman problem (TSP) is an easily stated but difficult-to-solve optimization problem 
that has received considerable attention from computer scientists and operations research specialists. 

The problem: Given a list of cities, and the distances between each pair of cities, find the minimum- 
length tour that visits each city exactly once. A tour is simply an ordered list of the set of cities, specifying 
the order in which the cities are to be visited so that total distance traveled is minimized. The problem 
of finding the minimum-distance tour is an NP-complete problem, that is, it has been established that the 
number of steps in any solution must have a non-polynomial (i.e., exponential) dependence on the size of 
the problem, i.e., the number of cities [20]. 

In a paper by Hopfield and Tank published in 1986 [8], it was shown that the TSP could be stated as 
an energy minimization problem, and, as such, that a Hopfield neural network could be used to solve it. 
It was also implied that such neural networks might be valuable in solving other difficult optimization 
problems. The solutions generated by the neural network were not optimum - i.e., not the minimum- 
distance solutions, but close approximations - and were only for problems with up to 30 cities, which in 
this problem context is a very small problem size. 

Since it is worthwhile to put this application of neural networks in perspective, note that computer 
scientists and mathematicians had generated many different algorithms for the minimum-distance and 
for approximate solutions to the TSP. In a recent paper [11], David Johnson of AT&T Bell Laboratories 
compared the Hopfield and Tank results with an algorithm developed by Lin and Kernighan, termed here 
the L-K algorithm [14]. The L-K algorithm could run the TSP for up to 50,000 cities and get within 2% 
of the minimum-distance tour. The Hopfield network only ran up to 30 cities and never got within 17% 
of the optimum solution. The L-K algorithm is also fast, taking less than one second on a VAX 8550 for 
the 30-city problem. The VAX 8550 time for the Hopfield network is not available (perhaps because it 
was run on a different computer using a different programming language, which would make the results 
incomparable). A 400-city TSP took 20 seconds with L-K, while a "simulated annealing" algorithm on 
this problem took over six hours. The Hopfield network has not solved a TSP this large. 

These results clearly show that the Hopfield network running on a digital computer is not competitive 
as an optimization algorithm for the TSP. However, if the Hopfield network were implemented on a VLSI 
chip instead of a digital computer, the chip implementation might be able to find solutions very quickly. 
If the circuit elements could respond in less than a microsecond, then the hardware implementation might 
settle to a solution in only a few tens or hundreds of microseconds. So if an autonomous vehicle like 
a planetary explorer or a submersible explorer needed to solve path optimization problems of similar 
complexity to the TSP in very short time, then a neural network implemented in VLSI might be the best 
way of realizing this capability. 

Wilson and Pawley of the University of Edinburgh were interested in exploring just this possibility, 
and made detailed studies of the Hopfield network solutions to the TSP [36]. In the course of doing 
many computer simulations, they could not duplicate the published results of Hopfield and Tank even 
on a 10-city TSP. In their detailed investigations, Wilson and Pawley discovered basic problems with 
the algorithm. They found, in fact, that the Hopfield network got legal solutions (i.e., tours that visited 
each city exactly once) only 8% of the time with only 10 cities. They concluded that "Hopfield and Tank 
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were very fortunate in the limited number of TSP simulations they attempted. Even at the value N=10, it 
transpires that their basic method is unreliable and does not offer much hope for improvement." 

In conclusion, one of the early and exciting accomplishments of a neural network was to (supposedly) 
have solved an NP-complete problem. Careful review of the work revealed that the Hopfield network did 
not produce optimum solutions to the TSP at all, but only approximate ones - and poor approximations at 
that - compared to standard computer optimization algorithms like Lin-Kernighan. The Hopfield network 
also was limited to solving problems of uninterestingly small size; moreover, it was shown to be generally 
unreliable in producing solutions that satisfied the constraints. It appears unworthy at this time to pursue 
this algorithm to a hardware implementation, which might have produced faster response times that might 
be of use in certain applications. The initial excitement was not justified in this case, as neural networks 
have contributed little to the solution of the TSP. This cannot be taken to imply that neural networks 
will never be useful in providing approximate solutions to any mathematical optimization problem, but at 
present, this is not an area to which neural networks contribute very much. 

Comparison Assessment Summary: 
The Traveling Salesman Problem 

Application: Approximate solutions to the TSP using a Hopfield network. 

Accuracy: Hopfield network approximations are not as accurate as conventional techniques, and very 
limited in the size of the problem that can be handled. 

Response Time: Not directly compared on the same computer in the published results. 

Knowledge Acquisition/Representation: Connection strengths are distances input in advance. 

Projection: Cannot judge success on other types of complex optimization problems at this time. 

3.3    ASSOCIATIVE MEMORIES 

One of the first applications of neural networks was in associative memories. Consider a simple asso- 
ciative memory which has stored in it M binary vectors of length N, often called memories. Given a binary 
input vector u of length N, the function of the associative memory is to produce as its output the stored 
memory vector with the smallest distance to the input u. The distance measure used most commonly for 
binary vectors is the Hamming distance - i.e., the number of places in which two binary vectors differ. For 
vectors of real numbers, the distance metric is usually Euclidian distance. In some associative memories, 
the values of the input vector components can have three values, 1, 0, and *, where * is a "wild card" 
symbol denoting that the Hamming distance computation should exclude the components where the input 
has a *. Or the numbers can even be likelihoods, real numbers between 0 and 1. This capability allows one 
to specify which parts of the input vector are to be matched by the associative memory lookup operation, 
which parts may be ignored, or which parts are more reliable. 

The problem: Given a specified distance function or metric for pairs of vectors, and a set of memories 
or code vectors, find the memory or code vector with the minimum distance to an input vector. The metric 
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may be changed for different inputs, as in the case of wild card symbols. Also, the associative memory 
may be required to list all code vectors within a prescribed distance from the input vector. 

The problem of decoding a binary error-correcting code used on a noisy channel can be stated to cor- 
respond exactly to the function of the associative memory. One of M code words (binary sequences) of 
length N is transmitted over a noisy channel and the receiver produces a noisy binary vector corresponding 
to the received word. The decoder now must find which of the M code words is closest to the received 
word in the Hamming distance sense, which corresponds to the maximum a posteriori probability decod- 
ing decision for a certain class of noisy discrete binary channels. The Euclidian distance metric applies to 
decoding for a channel with continuous additive white Gaussian noise. 

A similar, but not identical, problem that the associative memory function can do is encoding of the 
output of an information source to compress the data that must be transmitted over a communication 
channel. Consider a source which produces binary digits that are to be reproduced at a receiver only to 
within some average number of errors. That is, transmitting all of the source digits to the receiver without 
error is not required. This relaxed fidelity criterion allows the source data to be compressed as follows: 
An encoder with M < 2 N binary code words of length N maps an input vector (of length N) from the 
source into the nearest code word, nearest being used in this case in the Hamming distance sense. There 
would be fewer than all possible source output sequences or vectors in the code set of M words, and this 
implies that, at most, only M of the source output sequences could be matched exactly by a word in the 
code set, with some number of errors being introduced by transmitting the nearest code word rather than 
the exact source output. Once again, an associative memory as defined above could perform the source 
encoding function. This is often called "vector quantization." 

Applications for associative memories can be foreseen in data compression, as described above, in 
the near term, but according to John Moody, who was a member of Panel 2, the Adaptive Knowledge 
Processing Panel of this Study, "The long-term applications of associative memories, as pure memories, 
have yet to be defined in any detail." They do appear to be relevant to the problem of searching large 
databases, and to searching large sets of rules in AI expert systems. Given that associative memories have 
been studied since the early 1970s, with no significant practical application having yet materialized, their 
importance may be limited. 

A digital system could perform the associative memory task with a bank of M storage registers, each 
N bits long, and a means of computing the distance between an input sequence and the contents of each 
memory register. The memory would require M N bits. No fewer bits could perform the task of finding 
the best match in M words, so the ideal measure of hardware efficiency E could be taken as the number of 
bits in the memories over the total number of storage elements required to implement the system. In the 
case of the digital system, 

E = (M • N)I{M   N)=\ 

Hopfield's first paper on neural networks treated an associative memory example. There were problems in 
accuracy in that the Hopfield associative memory did not always produce as its output the nearest stored 
memory to the input vector. But its capacity was shown to be limited to M < ./V/(4 log N) if perfect 
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reproduction was desired while it had to store N2 bits. Its efficiency was thus 

1 
E = 

4 log JV 

A new associative memory, called the unary or Hamming network, has been designed by John Moody, et 
al. [4], and is described in Part II, Chapter 5 of this Report. This associative memory can take an input, 
with wild card symbols interspersed within it, and produce the nearest memory stored in it using only 
M • N bits of storage, giving the ideal efficiency of unity. This design also appears to be compatible with 
VLSI implementation. A schematic diagram of the Hamming network is shown in Figure 3-1. In Part VI 
of this Report, a Hamming network on a VLSI chip, which was designed and fabricated by AT&T Bell 
Laboratories, is described. This chip computes the Hamming distance between a binary input vector and 
46 vectors stored on the chip in less than 100 nanoseconds. The vectors are 46 bits long. 

OUTPUT 

MAXNET 
PICKS 
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PERCEPTRON 
CALCULATES 
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"N-2 *N-1 

INPUT 

Figure 3-1.    Hamming Network. 

A more general form of the associative memory problem has been addressed in which the designer 
would like to assure that a certain neighborhood of inputs be mapped into a prescribed memory vector. 
The designer would like to be able to specify a "domain of attraction" for each memory vector. This 
requirement amounts to building an associative memory with a rather arbitrary mapping function from 
inputs to memories. A simple metric may not suffice for this problem. Very little work has been done on 
this problem and there is, at present, no general way to solve it. 
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As an aside, the channel decoder device, discussed earlier in the context of communication theory, was 
intended for use with very long block codes. For instance, a block code of length N=128 bits would not 
be unusual. The rate of a block code is defined as log M/N, where M is the number of code words. A rate 
1/4 code would thus have rate log M/128 = 1/4, or log M = 32, and this implies M = 232 K, 4 104. 
The total storage required by the code would thus be 

M -N = 232 -27 =239 ^0.5 • 1012. 

This was deemed impractical for a codebook-type of decoder, which would simply store the entire code 
and check the Hamming distance of an input to each codeword. It is still impractical even using the AT&T 
Hamming network chip, since many millions of chips would be needed to decode such a long code. 

Associative memories do not provide a new solution to the noisy channel decoding problem or the 
source encoding problem. They simply propose a method of doing the computations in parallel, if it 
is ever feasible to wire up such a large amount of storage on chips or wafers. This is another example 
where neural networks were applied to a problem that had been studied years earlier, and the proposed 
solution was based on brute force parallelism, which communication theorists considered impractical in 
earlier years. There is no contribution to communication theory here, and it remains to be seen if VLSI 
implementations can be realized that will provide the required parallel system in a practical size. 

The approach taken by communication theorists in the 1960s and '70s was to look for "systematic" 
codes that could be generated from many fewer bits than M • N, using an algorithm, and proving that 
such systematic codes could provide good performance. Another point that was attacked, with notable 
success, was the development of decoding schemes that could make decoding decisions with many fewer 
computations than M • N to determine the nearest codeword. Parity check codes and convolutional codes 
which are in practical use today are the results of these early efforts in communication theory. The sim- 
ple exhaustive search of a codebook was considered an impractical solution to decoding long codes for 
performance approaching theoretical ideal. 

Recovery of stored information by means of associations with related data is a problem of great interest 
in AI. The relationships of interest in AI are very arbitrary and general ones, such as other objects with 
similar characteristics. This associative recall problem was addressed in AI by Quillian [24) using what he 
termed "semantic networks," which amount to graph-like data structures. The nodes of the graph denote 
objects or parts of objects, and the edges or connections between nodes represent relationships of various 
types. Semantic networks can be used to form hierarchical data structures that can include the inheritance 
of properties among related objects. An important drawback of neural network associative memories to 
date has been the simplicity of their structure, which limits them from being applied to the more general 
problems of storing and retrieving information, such as semantic networks. 

In summary, the associative memory problem has been precisely stated as a minimum-distance mapping 
or decoding problem with, in its most general form, a specified distance metric. The newest formulations 
of neural network associative memories are efficient in terms of the number of elements to store and re- 
cover arbitrary sets of memories (code words). The minimum distance decoding problem is a key problem 
of communication theory that has received a great deal of attention over the last three decades. The com- 
plexity of the problem for long codes has led to the development of systematic codes to reduce the number 
of elements in the decoders. The neural network approach does not appear likely to offer practical new 
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solutions to the decoding problem in communication engineering. The storage and retrieval of informa- 
tion on the basis of complex relations like inheritance in a hierarchical data structure has been studied in 
AI for some time. The present associative memory models are too simple to handle this problem. Other 
specific applications of associative memories have not yet been defined, and so constraints on code sets 
and the form of the applicable distance metrics are not available. Thus while hardware implementations 
of associative memories do offer the potential for speed, their utility in practical applications will have to 
await more detailed evaluation in some specific applications. 

Comparison Assessment Summary: 
Associative Memories 

Application: Associative memories for various uses, including vector quantization. 

Accuracy: Hamming networks perform adequately for simple metrics. 

Response Time: Custom VLSI chips can provide very rapid response times for small sets of memories, 
but probably not fast enough or large enough for noisy channel decoding. 

Knowledge Acquisition/Representation: Learning sometimes used, but specified set of memories 
usually handled. 

Physical Characteristics: Custom VLSI for small sets of memories (see Part VI of this Report). 

Projection: Not possible until more specific application evaluations appear. In present form, will not 
be useful as noisy channel decoders, or in implementing semantic networks. 

3.4    PATTERN CLASSIFICATION APPLICATIONS 

The application of neural networks to pattern classification has perhaps the best potential for practical 
systems. Pattern classifiers are mappings that define partitionings of feature space into regions corre- 
sponding to class membership. A theorem by Kolmogorov states that an arbitrary nonlinear mapping 
can be expressed in a form that can be implemented by a multi-layer neural network with, at most, three 
layers. Lippmann has shown that many standard pattern classification algorithms can be implemented 
using current neural network architectures [15]. New pattern classification algorithms, such as the "re- 
duced Coulomb energy (RCE)" networks of Nestor, Inc. [25] have also emerged from the work in neural 
networks. This trend will most likely continue, since neural networks do seem to be well-suited to appli- 
cations of trainable pattern classifiers. 

The application of neural networks to three different pattern classification problems is considered in 
this section: 

• Target recognition using imagery data, 

• Target discrimination using sonar signatures, and 

• A pattern classifier for smart weapon application. 
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3.4.1    Tactical Target Recognition Using Laser Radar Imagery 

Captain Dennis Ruck, USAF, in his Ph.D. thesis (at the Air Force Institute of Technology (AFIT), 
Dayton, OH) [26), attempted a careful comparison of a standard statistical pattern classification technique 
with a multi-layer neural network for recognizing tactical targets using imagery produced by a laser radar. 
Ruck's work (supervised by Matthew Kabrisky) addresses the problem of automatically detecting and 
recognizing such tactical targets as M60 tanks, POL tankers, jeeps, and 1.25- and 2.5-ton trucks. Two 
different approaches to the classification problem were taken: 

1. A nearest-neighbor classifier algorithm, and 

2. Use of a multi-layer perceptron with the backpropagation learning algorithm. 

The feature set used in all of the approaches was either the Zernicke moment invariants (a total of 22 
used) - which are invariant to position, scale, and rotation of the target object in the image plane - or a 
reduced feature set derived from the moment invariants using the method of Fisher linear discriminants. 
A database of laser radar images available at Air Force Wright Aeronautical Lab (AFWAL) was used in 
this work. 

The laser radar produced range and Doppler data - i.e., for each pixel for which a radar return was 
detected, a value of range and Doppler was provided by the laser radar. The recognition system included 
the following sequence of processing steps: 

1. Image segmentation: Partitioning the image into disjoint regions on the basis of 
relative range and Doppler; 

2. Target region detection:  Selection of "interesting" regions on which to attempt 
recognition; 

3. Feature extraction: Calculation of the Zernicke moment invariants; 

4. Reduction of the feature set dimensionality: Using Fisher linear discriminants; and 

5. Target recognition or classification: Using either a nearest-neighbor classifier or a 
multi-layer perceptron. 

The training set used in these experiments had only 57 images of four different vehicle types, which 
included 47 tanks, six jeeps, four POLs, four 2.5-ton trucks, and no 1.25-ton trucks. The training set was 
further subdivided into 11 different target classes, considering each different viewing aspect for each target 
as a separate class. The nearest-neighbor classifier used a set of 10 features derived from the Zernicke 
moment invariants. 

It correctly classified 76.5% of the tanks in the test set. It did poorly on the other types of vehicles, 
perhaps because they were under-represented in the database. 

The multi-layer neural network was quite simple to implement, and was trained using the backprop- 
agation learning algorithm.   Classification experiments were run with both the raw Zernicke moment 
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invariants as features and with the Fisher reduced set. For the 22 raw Zernicke moment invariants, the 
number of neurons in the first and second layers were equal to 200 and 60, respectively. For the Fisher 
reduced feature set of four features, these numbers were 100 and 30, respectively. The number of output 
units was equal to the number of classes, which were considered to be just four in these experiments, since 
only four different vehicles appeared in the training set. The total number of training iterations to train 
the neural network were 26,650 for the 22-dimensional feature vector and 3,110 for the four-dimensional 
input. The multi-layer perceptron correctly recognized 86.4% of the tanks in the test set when using the 
22-dimensional raw feature set, and 59.1% using the reduced four-dimensional feature set. 

In summary, the work by Ruck was a serious attempt to quantify the relative performance of a standard 
nearest-neighbor pattern classifier and a multi-layer perceptron in a target recognition application. 

The database was not adequate for a careful measurement of the separability of all of the target classes. 
Even with this qualification, the performance results showed the neural network approach to be compet- 
itive with the nearest-neighbor classifier. The performance of the nearest-neighbor classifier should have 
been evaluated using the 22-dimensional raw features, for fair comparison with the neural network which 
achieved its best performance with this set (on tank recognition). 

Another aspect of interest in the comparison of these two methods is that of knowledge acquisition - 
i.e., deriving information from the training set to set up the algorithms. In the case of the nearest-neighbor 
classifier, the decision rules must be determined from the training set, which, under a Gaussian noise as- 
sumption, simply involves the estimation of a mean vector for each class. In the case of the neural network, 
the knowledge acquisition process involves training the network using the backpropagation learning algo- 
rithm. The number of training iterations given above indicates that the training is more time-consuming 
than setting up the classifier decision rules. 

It appears that the neural network approach compared favorably in performance (tank recognition) to 
the standard pattern classifier approach, but was more time-consuming to set up. There was no surprising 
discovery in this work of a radically improved approach to target recognition, although Ruck's work is 
somewhat encouraging with regard to further comparison studies of this type. The work is valuable in that 
it does a careful comparison of two approaches using the same database, and it does indicate that such a 
careful comparison takes considerably more effort than merely demonstrating that a neural network can do 
the recognition task, but without any reference points to put the neural network performance in perspective 
with respect to existing techniques. 

3.4.2    Discrimination Between Two Different Sonar Targets 

Gorman and Sejnowski [6] have applied a multi-layer neural network to the problem of discriminating 
between sonar returns from two different targets on a sandy ocean bottom - a metal cylinder and a rock, 
both about five feet in extent. The objective of the study was to compare the neural network approach to the 
performance of a standard nearest-neighbor pattern classifier and to that of humans, and to try to correlate 
the hidden layer units to features that were useful to the humans. The database used was comprised of a 
selected set of 208 recorded sonar returns (selected from a larger database of 1,200 returns on the basis of 
signal-to-noise ratio), and included returns from different aspect angles for both targets. The experiment 
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tested the ability of the various approaches to discriminate between the two targets on the basis of only a 
single sonar return. 

The transmitted sonar waveform was a linear frequency modulated (FM) chirp signal. The sampled re- 
turns were filtered using a bank of 60 bandpass filters. The feature set used in these experiments consisted 
of spectral estimates of the returns made by smoothing the outputs of these filters. The spectral estimates 
were staggered in time to correspond to the FM chirp of the transmitted waveform. A three-layer neural 
network with continuous valued units was used, with the input layer of 60 units clamped to sample values 
of the sonar signal. The number of units in the hidden layer was varied from 0 to 24 in a series of exper- 
iments. The two output units were used to represent the two possible targets. The network was trained 
using the backpropagation learning algorithm and 300 presentations of the entire training set were used 
for each experiment. The test sets were always different from the training sets. In one set of experiments, 
no attention was paid to the aspect angle of the targets, picking samples for the training and test sets at 
random. In another experiment, care was taken to include a sampling of all aspect angles for both targets 
in both the training and test sets. For each experiment, the network was trained 10 times with different 
(random) initial values used for the weights each time to try to average out the effects of the initial state 
of the network. 

The nearest-neighbor classifier used a set of labeled returns to which the feature vector of an unknown 
input was compared in the Euclidian distance sense. If the two nearest neighbors of the stored set belonged 
to the same target, then the classifier announced that target as the decision on the input. The stored data 
set used 104 returns in this algorithm, so the distance computations were considerable compared to the 
multi-layer network. A useful reference point is provided by a result of Cover and Hart that states that the 
asymptotic error rate of a nearest-neighbor classifier is lower-bounded by that of an optimum Gaussian 
classifier, which can be no more than a factor of two lower than that of the nearest-neighbor classifier. 

Experiments were done with human subjects that were trained on the sonar data. The sonar returns 
presented to the subjects were of longer duration than those used for the network and the nearest-neighbor 
classifier, and were also processed differently for the human listeners. Only three subjects were trained and 
tested in these experiments, with 100 of the total of 208 data samples in the database used in the training 
sessions. The subjects were required to announce a classification decision as each training sample was 
presented, with immediate feedback of the correct answer being provided. 

For simplicity, only the results for the aspect-dependent experiments are discussed here. The neural 
network achieved correct classifications at around the 90% range for this series of experiments. This 
performance did not improve significantly for more than six units in the hidden layer. The nearest-neighbor 
classifier achieved 82.7% correct classifications using the same overall database. This implies that an 
optimum Gaussian classifier could achieve as high as 91.4% correct on this data. Only one human subject 
addressed the classification problem for the aspect-dependent data, achieving 88% correct results, but this 
is clearly too small a sample from which to draw conclusions. 

In summary, it appears that the multi-layer network performed about as well as the small set of human 
subjects, although the experiments differed in detail. The nearest-neighbor classifier was not as good as 
either the neural network or the human subjects, although the optimum Gaussian classifier bound was 
quite close to the neural network performance. From the point of view of accuracy, there were no major 
breakthroughs in this problem. 
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From the point of view of knowledge acquisition, the training of the neural network involved con- 
siderable effort, but it could be automated (programmed) using a digital computer. The experiments with 
human subjects also involved considerable training effort, probably taking more time to present and record 
the subjects' decisions than that taken with the neural network. The nearest-neighbor classifier was more 
straightforward to set up, once programmed, but the computation time to classify each input was signifi- 
cant, and would be an important consideration in fielding an operational system, since it would dictate the 
size of the computer needed. 

Both the neural network and the nearest-neighbor classifier could be implemented in special-purpose 
hardware to realize a compact system with fast response time. This particular problem was not of great 
interest in this regard because of the limited scope of the experiments. A practical system would have 
to deal with a greater variety of target types and ocean bottoms, as well as other acoustic propagation 
effects in water that could affect classification performance. The knowledge acquisition issue would be 
much more significant and the response of a nearest-neighbor classifier might also be an important issue. 
Special-purpose hardware implementations of a classifier might well be considered for a practical sonar 
target recognition system if adequate performance could first be demonstrated using a digital computer 
implementation. 

It appears that it would not be unreasonable to consider a practical sonar target recognition system 
based on the use of multi-layer neural networks. One advantage of this approach is that it appears that 
formulating a detailed model of the targets, the sensor noise, and the distortions of the propagation medium 
might not be of primary importance in such an effort. In a manner very much like that used in applying 
statistical pattern classification techniques, a classifier algorithm is programmed on a digital computer and 
tested on a database. Unlike the pattern classifier, the neural network may require considerable effort to 
train the system. But the neural network then would be easier to implement in special-purpose hardware 
than something like the nearest-neighbor classifier, which might require a digital computer for accuracy 
and considerable computation to classify inputs. A significant development effort would be required to 
establish the feasibility of the neural network approach to a practical sonar target recognition/classification 
system, but the work of Gorman and Sejnowski is not at all discouraging. 

3.4.3    Smart Weapons Applications 

The concept of "smart" weapons is to transfer more of the problem-solving capability from human 
operators to the machines themselves in the hope of getting the job done effectively but with much less risk 
to the human operators. Examples of such applications are abundant. Autonomous homing weapons, the 
so-called "fire and forget" weapons, are strongly preferred over weapons that require constant monitoring 
and guidance all the way to the target by the operator. Of course, this type weapon puts more of the 
functionality in the weapon itself, which means more equipment in a small space, a high "G" environment, 
and a package which is not going to return. The basic issue is whether or not a good guidance package 
can be designed to give adequate performance at all in the presence of real-world conditions like noisy 
sensor data, variable target characteristics and, perhaps most critical, enemy countermeasures designed to 
deliberately try to foil the guidance system. If a guidance system can be designed to cope with all these 
effects and still do the job adequately, then one faces the challenge of building an expendable package to 
fit the size, weight and power constraints. 
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One easy-to-understand function that is essential in many smart weapons is that of determining the ex- 
act instant of detonation of the warhead of the weapon to assure maximum damage to the target. Some 
missiles in the past were completely controlled from the ground, including this detonation function. How- 
ever, in fire and forget weapons, a device on board the weapon, called the proximity fuze, performs this 
function. The design of a proximity fuze for an anti-aircraft missile is a challenging problem when one 
considers noisy sensor data, variations of target signature with different aspect or approach angles, and 
countermeasures. 

There are a number of technical alternatives to this problem, such as a deterministic decision tree, a 
rule-based expert system, a conventional pattern classifier, or even a neural network. Whatever approach 
is chosen, if it can be made to work, perhaps by demonstrating performance in simulation studies, then the 
hardware implementation must also be considered in evaluating its feasibility. Rule-based systems run on 
digital computers, usually in high-level languages which require large memories and lots of processing 
to execute. Implementations based on the use of general-purpose digital computers are not feasible for 
this application. Some of the approaches require complete analysis of the problem to formulate a solution, 
which can then be implemented in special-purpose hardware that might meet the physical constraints of the 
vehicle, especially if custom VLSI were employed. However, an important consideration is the changeable 
nature of the problem, as new target types are deployed and new countermeasures are developed. A 
customized, special-purpose circuit might soon be obsolete. 

A trainable system appears to have important advantages for this problem. One should thus be inter- 
ested in trainable pattern classifiers or neural networks for the proximity fuze function. Many pattern 
classification schemes can be implemented in the form of neural networks, so these two approaches are 
quite similar. One study done in a government laboratory pursued this chain of reasoning and experi- 
mented with a simple multi-layer neural network for this function and found that, for a particular missile 
application, the network could be trained to do this job adequately. Moreover, it also appeared that the 
network could be implemented with analog neurons that could fit on a single VLSI chip. It remains to 
design the chip, fabricate it, and test it in detail to establish the feasibility of the neural network approach 
for this application. Given that the neural network is small, the size of the chip may not be a problem. The 
feasibility of this approach may be more critically dependent on whether the circuit technology will allow 
adaptation of the network weights to compensate for optimization of algorithm performance as well as for 
element inaccuracies. The experimental work on implementing neural networks in VLSI chips discussed 
in Part VI of this Report is relevant to this point. 

If this approach can be made to work, then chips would be fabricated and trained using a standard 
data base, before being installed in equipment on board a missile. When new target types appear or new 
countermeasures were to be included, the data base would be augmented and used to train the same type of 
chips for the expanded problem. The size and processing speed of the neural network chip offers perhaps 
the best chance of meeting the physical constraints of the smart weapon problem. The production cost 
of custom neural network chips is difficult to estimate at present, since new circuit technology may be 
involved and production runs may not be very large. 

This approach would seem to be appropriate for other smart weapon functions as well. The output of 
an on-board sensor might be processed using neural networks to recognize the target, to estimate target 
parameters, and to perform the tracking function for an evasive target. It may be feasible some day to have 
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such a target tracker driving the missile control system which uses a neural network to perform efficient, 
coordinated maneuvers for pursuit of an evasive target. A number of such simple functions appear to be 
very useful in the context of smart weapons. If such functions could be done in relatively small neural 
network modules that were implemented in custom chips, then there would be a reasonable chance of 
meeting the stringent constraints on hardware imposed in such applications as smart weapons and other 
autonomous vehicles and robots. 

3.4.4    Summary of Pattern Classification Applications 

Neural networks have demonstrated good classification accuracy when carefully compared to standard 
classifiers, but not significantly better performance in this regard - although this cannot be ruled out in 
future work. As trainable systems, they have dealt effectively with the knowledge acquisition/embedding 
problem. For some applications - such as "smart" weapons (e.g., the proximity fuze problem) - imple- 
mentation in VLSI of simply-structured neural networks is not far off, and the physical constraints of 
this application make neural networks the only known way of compactly implementing a classification 
algorithm that can do the job with adequate accuracy. It appears almost certain that neural networks will 
provide new solutions to important pattern classification problems, and this may occur in the near future 
- e.g., in the time it takes to design, fabricate and test a neural network chip with adaptive synapses. Ac- 
cording to the work of the Neural Network Study's Advanced Implementation Technology Panel, Panel 5, 
this may be within four years. 

Comparison Assessment Summary: 
Pattern Classification Applications 

Application: Pattern classification, trainable classifiers. 

Accuracy: Comparable to standard pattern classification algorithms, but not significantly better. 

Response Time: Custom VLSI chips offer fast response time for realtime system applications, faster 
than computer implementations. 

Knowledge Acquisition/Representation: Depending on the learning algorithm used, training a neural 
network usually takes longer than training statistical pattern classifiers, but the knowledge acquisition 
problem is more straightforward than modeling and analysis for subsequent design of a fixed algorithm. 

Physical Characteristics: Custom VLSI chips offer the smallest classifier realization for space-, power- 
, and weight-constrained applications. 

Projection: Neural networks appear well-suited to pattern classification problems, allowing straightfor- 
ward implementation of existing algorithms or new variations of classifier algorithms, with the possibility 
of compact, realtime hardware using VLSI implementations, for space-constrained applications such as 
autonomous vehicles and smart weapons. 
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3.5    COMPUTATIONAL MAPS FOR ROBOTIC CONTROL 

One important problem in control theory is the design of a controller which uses the present state of a 
system and determines the optimal control inputs to a system of actuators to get the system to a desired new 
state. The standard approach to this problem is to model the elements of the system, do a mathematical 
analysis to determine the control law that produces the optimal actuator inputs, and implement this control 
law by doing realtime computation. Control of robot manipulators is an especially complex task because 
it usually involves many actuators which interact with each other, many degrees of freedom, and many 
ways to carry out a desired task; the challenge is to determine control inputs that result in "coordinated 
movements." Manipulator control usually involves approximate models of physical devices, complex 
coordinate transformations, and tensor calculus. 

A new approach to this problem was pioneered by James Albus in the 1970s, inspired by his Ph.D. 
studies of the role of the cerebellum in motor control in living organisms [3,2]. His approach, which he 
has termed the Cerebellar Model Articulation Controller (CMAC), is based on a neural network archi- 
tecture which determines actuator control inputs by using what amounts to a lookup table with feedback 
variables from a manipulator. In CMAC, the values of the desired control functions are learned from 
training examples, stored and used with an interpolation scheme that allows a degree of generalization to 
handle situations similar, but not exactly the same as, the training examples. It is essentially a trade of 
computational complexity for storage, which is advantageous given the availability of inexpensive storage 
devices. 

In the CMAC approach, there is no need for detailed mathematical modeling, analysis or complex 
realtime computations to realize a robot controller. An arbitrary mapping function from the present and 
desired states of the manipulator to the actuator control inputs can be learned from training examples. 
Many feedback variables from an array of sensors can be accommodated with only a linear growth of 
required memory with the number of variables. The resolution of the mapping function can be chosen 
by the designer for the required degree of accuracy of control. The feedback sensors need not be linear 
or simple - only repeatable. These are obviously advantages that would be very important in biological 
control problems. It appears that this is the style of control imposed by the cerebellum of animals. 

An interesting application of the CMAC concept to the control of a robotic fork lift is currently being 
carried out by Jennings at Martin Marietta |10] {Part IV of this Report includes a brief description of this 
application written by the investigator). In an experimental system, a human operator can control the fork 
lift to align it with a pallet and pick it up, while a number of optical and acoustic "radar-like" sensors on 
the tines of the fork provide data on the relative position of the fork and the bottom of the pallet. The 
CMAC system thus receives the sensor inputs together with the human operator's control inputs, which 
can be used to learn the mapping between the two to eventually control the system without the human 
operator. This system is in an experimental stage at present and various learning strategies are being tried. 
No quantitative performance comparison can be made with a conventional robotic control approach to 
this problem, but the CMAC approach clearly offers several advantages which are important to this class 
of problems. 

In another study carried out at the University of New Hampshire by Miller, Glanz and Kraft, a torque 
controller was realized by using a CMAC module in place of a dynamic model of the robot (18], In this 
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simulation study, a controller was trained to follow desired trajectories by providing it with a sequence of 
positions along the desired trajectories. Experiments were carried out with various CMAC memory sizes, 
and performance was found to be relatively insensitive to memory size. Although analytical evaluation 
of performance is difficult for this type of control system, it does appear to be straightforward to apply the 
CMAC concept to such a control problem, it needs only relatively inexpensive hardware to provide better 
performance than fixed gain controllers, and it is fairly insensitive to changes in the system characteristics. 

In summary, the use of computational maps has several important advantages in robotic control appli- 
cations, and will probably find application in practical systems even at their present state of development. 
This approach is not appropriate for all control problems, of course. One area that would increase the 
utility of this approach is manipulator motion planning with constraints on the trajectory due to obstruct- 
ing objects and difficult gripping surfaces. This more complex problem has just begun to receive some 
attention. 

Comparison Assessment Summary: 
Computational Maps For Robotic Control 

Application: Learning mappings for simple robotic manipulator control. 

Accuracy: The CMAC approach can provide accuracy comparable to conventional control approaches. 

Response Time: Response time is adequate for realtime applications, with less computational power 
than conventional approaches. 

Knowledge Acquisition/Representation: Learning computational maps is simpler than modeling con- 
trol system components and doing system analysis and optimization, at least for simple control problems. 

Physical Characteristics: Currently available memories allow fairly compact realizations of practical 
computational maps that compare favorably with conventional approaches. 

Projection: Computational maps will probably find practical application in the immediate future in 
simple manipulator control systems. More complex control requiring planning and obstacle avoidance 
will require further research. 

3.6    SIGNAL PROCESSING APPLICATIONS OF NEURAL NETWORKS 

3.6.1    Recovery of Noise-Corrupted or Distorted Waveforms 

A classical signal processing problem is that of recovering an analog signal after transmission over a 
noisy or dispersive channel. In many cases, there may very little knowledge about the statistical charac- 
teristics of the signal, noise, or dispersion. Some examples are: 

• Dispersion over telephone channels, time-invariant or very slowly varying; 

• Noisy sensor data, such as electrocardiograms, where the shape of the waveform of 
interest varies slowly with time and is corrupted by measurement noise. 
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The standard approaches to this problem include filtering for noise reduction and channel equalization to 
reduce the dispersion, and the application of estimation theory to form an optimal estimate of the desired 
waveform. The lack of knowledge of relevant statistical characteristics hinders the use of estimation 
theory, in that data gathering and analysis may be first needed to formulate the requisite models, which 
could then be used to find the optimal signal estimator. 

In some cases, it may be possible to specify the desired processor output for a particular noisy or dis- 
torted input. For instance, in the case of the dispersive telephone channel, a known signal can be sent by 
prior arrangement, so the receiver has both the distorted channel output and the desired output waveform. 
Then these waveforms can be used to "train" an adaptive filter - i.e., solve the optimal filter problem in 
real time by adjusting the filter parameters to give the desired output waveform. There is a version which 
does not use a training waveform but minimizes dispersion at sampling times. This approach to equaliza- 
tion of dispersive telephone channels has been highly successful, and the so-called "adaptive equalizer" is 
now the standard means of reducing dispersion on these channels [35]. Each adaptive equalizer is a linear 
finite impulse response (FIR) filter which operates on a window of successive samples of the channel out- 
put, and the output is a simply a weighted sum of the input samples. An adaptive algorithm, usually the 
Widrow-Hoff Least Mean Square (LMS) algorithm, is used to adjust the weights to provide the desired 
(undistorted) channel output [34]. The adaptive equalizer is really a single, linear "neuron," i.e., without 
the usual sigmoidal nonlinearity. There are probably many thousands of such adaptive equalizers currently 
operating in digital telephone transmission systems throughout the country, demonstrating the utility and 
practical value of adaptive filtering techniques for certain types of problems. 

Adaptive filters are also used to recover waveforms from noisy channels. Douglas Palmer of Hecht- 
Nielsen Neurocomputer, Inc. has attempted to compare the filtering capabilities of a multi-layer neural 
network with an adaptive linear filter using the LMS algorithm [19]. An artificial problem was created 
in that essentially noise-free EKG samples were available, and noisy channel outputs were simulated 
for use in training by adding random noise to these noise-free samples. Both the noise-free and noise- 
corrupted waveforms were then used to adapt a linear FIR filter and also to train a three-layer neural 
network using the backpropagation learning algorithm. The neural network included a linearly weighted 
combination of the samples in the input window as well as the output of a multi-layer network with neurons 
that had a sigmoidal nonlinearity. The neural network system thus included the linear filter as well as 
well as nonlinear terms (see Figure 3-2). The hope was that the nonlinear terms would allow the neural 
network to mimic the desired output waveform more accurately than the linear filter alone. The graphs of 
output waveforms indeed show that the neural network produces waveforms that appear less noisy than 
the linear adaptive filter, but quantitative measurements of output signal-to-noise ratios were not provided 
in Palmer's paper. 

In an attempt to quantify the advantage of the neural network approach relative to the adaptive linear 
filter in this problem, Widrow and his student, Rodney Winter, did a computer simulation of a linear least 
squares adaptive FIR filter and an FIR filter that included nonlinear terms as well [33]. The nonlinear terms 
were simply the squared values of some of the samples in the input window. This was not at all the same 
as the multi-layer neural network used by Palmer. But it provided an alternative set of quantitative data 
on nonlinear adaptive filtering. Since Palmer's EKG data was not available to Widrow, Winter used ideal 
triangular pulses as the signal and added noise from a random number generator to produce "noisy" data. 
The output signal-to-noise ratios of the linear and the nonlinear adaptive systems were then estimated. 
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The results showed that the nonlinear system produced output signal-to-noise ratios approximately 2.5 dB 
higher than that of the linear system. 

It is difficult to draw sharp conclusions from these two experimental studies. Both used data which were 
artificial in the sense that noisy measurements were simulated by adding noise to the signal recordings 
which were essentially noise-free, and neither had a theory to explain the performance gains. 

It is desirable to compare these experiments with analytical results, such as those which might be pro- 
vided by estimation theory. However, as mentioned earlier, the lack of good models for the signal varia- 
tions and channel effects seriously hinders this approach. Moreover, the solutions provided by estimation 
theory are very sensitive to the exact state of knowledge at the receiver concerning the signal and channel. 
For instance, if a periodic waveform whose shape (and period) was fixed for all time were to be recov- 
ered from data in which this signal was corrupted by additive, stationary noise, the optimum estimator 
would produce waveform estimates which would steadily improve with time to provide an estimate with 
arbitrarily high accuracy. In the two experiments described above, the waveform could just as easily have 
been quasi-periodic, with intervals between the pulse waveforms that varied randomly. As long as the 
actual noise-free waveform was available for training, the systems could still adapt to provide the desired 
outputs. In the case of the estimation theory approach, a pulse train with random jitter between pulses 
would lead to a composite estimation problem, having to simultaneously estimate time of arrival as well 
as the shape of the pulse waveform. This problem leads to nonlinear estimation equations for the optimum 
estimate of these quantities which would have to be solved by some approximate methods. One way to 
realize approximate solutions would be to cast the estimation equations in the form of an energy function 
so that finding the maximum-likelihood estimator would correspond to finding the minimum of an energy 
function [17]. Then simulated annealing or some other optimization technique could be used to obtain 
approximate solutions to the estimation equations. Thus a neural network that implements a simulated 
annealing algorithm could be used to provide an approximate, iterative method of solving the estimation 
equations for the best (maximum likelihood) estimate of the quantities desired in this problem. 

In summary, adaptive filtering techniques have proved valuable in signal processing problems where 
training data is available. The widely used adaptive equalizer for dispersive telephone channels is an 
example of this. The studies discussed here which attempted to compare linear adaptive filters, neural 
networks, and nonlinear adaptive filters addressed artificial problems. However, the results showed some 
advantage for the nonlinear systems, although without accompanying theory. Certainly the results have 
no clear implications for the claimed applications of neural networks in detecting arrhythmias in EKGs or 
to separating fetal EKGs from the mother's. 

Estimation theory, on the other hand, could provide highly accurate estimates of an unknown but in- 
variant waveform with known time of arrival, which is not unlike the knowledge implicit in the availabil- 
ity of the desired output for training the adaptive systems. In composite estimation problems where the 
waveform and its time of arrival have to be simultaneously estimated, exact solution of the (nonlinear) 
estimation equations is difficult, but a neural network may be used to provide what amounts to iterative 
approximations to the solution of such equations. It appears that if a great deal of training data is avail- 
able, then the data could be used to formulate good statistical models for the signal and channel to apply 
estimation theory, which might, however, present difficulties because of the nonlinear equations. If only a 
limited amount of training data is available, then the adaptive system approach may be more suitable. But 
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a neural network system which learns inefficiently may not adapt adequately with limited training data 
either. 

At present, it is not possible to say which approach is best-suited to building a signal processor when 
limited data on the signal source and channel are available. The problem of optimal use of available data, 
whether for formulating statistical models for system design or for training adaptive systems, is deserving 
of detailed study to try to quantify the basic issues of optimal use of limited information. 

3.6.2   Prediction Of Time Series 

A problem that occurs repeatedly is that of prediction of future sample values of a time series. The 
predicted tracks of aircraft are often needed for a number of applications like estimation of potential for 
mid-air collision. Prediction of the coordinates of aircraft position at some time in the future on the basis 
of measured positions (coordinates) provided by a radar sensor can be viewed as a problem in prediction of 
time series. Prediction of sunspot activity can also be viewed in this light, and, of course, there is always a 
great deal of interest in schemes for the prediction of future values of common stocks on the basis of past 
stock prices and various market composite indices. The waveform estimation problem discussed above 
is very similar - but not quite exactly the same as - time series prediction, since it involves estimation of 
the latest sample value on the basis of past noisy measurements. 

Alan Lapedes and Robert Farber have attempted to do prediction of time series using neural net- 
works [13]. In their work, they use a multi-layer perceptron to predict values of a nonlinear dynamical 
system that exhibits chaotic behavior. The scheme is based on the familiar sliding window, which takes 
N consecutive samples of the series and maps them into a value that represents the prediction of a sample 
value at some time interval ahead of the window. Chaos in dynamical systems mimics the behavior of 
pseudo-random number generators, which appear to be random in many statistical tests, and, hence, might 
be expected to be difficult to predict. 

The particular dynamical system studied by Lapedes and Farber is the Glass-Mackey nonlinear dif- 
ferential equation, which has an infinite dimensional phase space - i.e., an infinite number of values are 
needed to describe the initial conditions for this system. They used a network with two hidden layers, 
with the number of neurons being determined by the required degree of accuracy of the predictions. They 
typically used a window size of four samples, and trained the network using 500 input/output pairs - i.e., 
500 sets of four samples each of the time series were used as inputs together with the computed value of 
the sample to be predicted (ahead of the window). Prediction intervals of up to 400 samples ahead of the 
last input value were used. 

The accuracy of the predictions was normalized to the dynamic range of the function (over an unspec- 
ified time interval). The plot of prediction accuracy (ordinate) versus the prediction interval (abscissa) 
is shown as curve "D" in Figure 3-3. A recursive prediction method was used with the neural network 
and its performance is shown as curve "E" in this figure. The normalized accuracy of the neural net- 
work predictors was compared to the conventional Widrow-Hoff linear adaptive filter [34] and polynomial 
curve-fitting predictors. The Widrow-Hoff predictor performance is given by curve "B" of Figure 3-3 and 
non-recursive and recursive polynomial predictors are given by curves "A" and "C", respectively. The 
neural network clearly gives superior predictions for this particular dynamical system. 
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Lapedes and Farber make the point that neural networks are seldom touted as providing a high degree of 
numerical accuracy in calculations, yet in this application, the neural network gave the highest accuracy. 
Some confusion may result from this statement, since in this Study a neural network implemented as an 
algorithm running on a digital computer is differentiated from a neural network as implemented directly 
in hardware. The neural network time series predictor of Lapedes and Farber is, in fact, an algorithm 
running on a digital computer using the floating point capability of the computer. This statement should 
not be confused with the discussions in other parts of this Report concerning implementation of neural 
networks in hardware using analog processing elements, where an important issue is tolerance of the 
network to neural element fabrication inaccuracies and defects. Their claim is simply that the multi-layer 
neural network algorithms applied to this time series prediction problem can provide the requisite accuracy 
when the algorithm is done in floating point math on a digital computer. 

The paper by Lapedes and Farber discusses the multi-layer network as providing a functional approx- 
imation of a mapping of Rn into Rm, which is then used for interpolation or extrapolation to obtain 
predictions. Their discussion points out that only two hidden layers are needed for arbitrary nonlinear 
functions (invoking Kolmogorov's result), and the required accuracy of the function determines the num- 
ber of neurons needed in each layer. The use of a chaotic function as an example for time series prediction 
required the functional approximation of what might be considered a difficult mapping. However, no gen- 
eral conclusions can be drawn regarding the efficiency of the approach for other classes of functions. This 
application of neural networks again illustrates the basic property of neural networks as implementing 
mappings that can be defined from a series of examples. 

3.6.3    Summary of Signal Processing Applications 

The application of neural networks to problems of estimating and predicting waveforms has been ex- 
amined. The examinations discussed here are exploratory studies. They indicate that in problems where 
sufficient data is available for training, it may be useful to develop a trainable system architecture and op- 
timize its performance by training using the currently known learning algorithms for neural networks. The 
use of neural networks introduces nonlinear processing that adds more flexibility to the system capabilities, 
which may lead to better performance than conventional linear adaptive systems in certain applications. 
The applications considered here show some performance advantage, but not a major advantage. Even so, 
research will probably continue in the exploration of new classes of filters, nonlinear signal processors, 
and learning algorithms for adaptive systems for many applications. It is impossible to predict the degree 
of success that will be achieved in these efforts, but it is likely that the extra flexibility inherent in these 
systems will lead to some number of practical applications for which neural network signal processors 
will offer better performance in a smaller, cheaper package. 

Comparison Assessment Summary: 
Signal Processing Applications 

Application: Signal processing for waveform estimation and prediction in the presence of channel 
noise and distortion. 
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Accuracy: Limited study of somewhat artificial examples shows performance of current neural network 
models to be comparable to conventional adaptive linear filters. 

Response Time: Computational power needed depends on the waveform bandwidth and time con- 
straints, with the development of VLSI implementations becoming cost-effective over serial or parallel 
computers at some point. 

Knowledge Acquisition/Representation: The tradeoff is modeling-analysis versus training to opti- 
mize system performance. It is not clear which approach is advantageous at present. With abundant data 
available for training, if an adequate system architecture can be formulated so that it can be adequately 
adjusted by training, the adaptive system approach would have an advantage. 

Physical Characteristics: VLSI implementations would have advantages for space-constrained appli- 
cations. 

Projection: Although there is no hard evidence at present, it is likely that nonlinear adaptive systems 
will find utility in signal processing applications in the future because of the greater flexibility of such 
systems and the difficulty of analytic approaches for nonlinear systems. 

3.7    SPEECH APPLICATIONS 

3.7.1    Text-To-Speech Synthesis 

The problem of synthesizing speech from text is usually treated in two separate stages: first, translating 
the text into a representation for sounds; and second, using this representation to control a device that 
can generate the sounds. The text, a sequence of alphabetic characters, is first translated to a sequence of 
symbols representing elemental sounds or phonemes. There is a long history of research on this problem 
which is summarized quite completely in a recent article by Klatt [12]. There are a number of commercial 
products available, some of which produce speech of remarkable quality. The best may be DECtalk, a 
system sold by Digital Equipment Corp. (DEC) which is based heavily on the work of Klatt. A sample 
recording of over 30 speech synthesizers included with Klatt's article shows DECtalk to generate clearly 
intelligible speech at a rate of 300 words per minute. 

DECtalk took approximately 15 years of development and refinement, most of which were spent on the 
speech generator stage of the system to produce high-quality synthetic speech. The first stage of translation 
of alphabetic to phonemic representation is done using acoustic-phonetic rules, and took approximately 
three years, according to Klatt. 

Sejnowski and Rosenberg have published papers on a system called NETtalk, which they describe as "a 
parallel network that learns to talk" [30,29]. In this system, they used a three-layer neural network to do the 
first stage; the second stage was done using the speech generator portion of DECtalk. A seven-character 
sliding window is used to provide inputs to the neural network, and the output is one of 21 characters 
representing a set of articulatory features. A unary representation is used for the input text characters as 
well as the output phonemes, so the input layer has a total of 203 neurons and the output layer has 21 
neurons. The number of units in the hidden layer was varied from 0 (zero) to 120, to test the sensitivity of 
the performance to this parameter. The network was trained using the backpropagation learning algorithm. 
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The network was trained using a data base of 20,000 English words together with their correct translation 
to phonemes. The actual training set consisted of the 1,000 most commonly-used words in this dictionary, 
each word being presented to the network individually - i.e., each word slid through the input window 
of seven characters by itself. The learning curve for this network varied with the numbers of units in 
the hidden layer. The set of 1,000 words was presented 30,000 times during the training phase; correct 
translation of text was done more than 98% of the time on the training set. When tested on the full 
dictionary of 20,000 words, the network translated 77% of the words correctly. This falls far below the 
level achieved by the approach used in DECtalk. In the opinion expressed by Klatt in his article, the 
structure of NETtalk in operating only on seven contiguous letters is probably too restrictive to ever be 
competitive with DECtalk, even for much larger training sets. The entire set of NETtalk experiments was 
carried out during a summer, which was considerably shorter than the time taken by a human expert to 
formulate acoustic-phonetic rules of DECtalk, but the performance of NETtalk also fell considerably short 
of that of DECtalk. 

The NETtalk example is presented here because it is considered one of the highlights of recent neural 
network accomplishments. A detailed comparison between the commercial DECtalk system, regarded 
as the state of the art in text-to-speech synthesis, and NETtalk is not possible because the data are insuf- 
ficient to compare the time for knowledge acquisition for both approaches to achieve the same level of 
performance, or to compare the performance for the same amount of time invested in knowledge acquisi- 
tion. Thus the Panel can conclude very little, on the basis of the NETtalk experiments, with respect to the 
efficiency of neural network knowledge acquisition or about ultimate performance in this application. 

Comparison Assessment Summary: 
Text-to-Speech Synthesis 

Application: Text-to-speech synthesis. 

Accuracy: The current NETtalk design is inferior to commercially available systems and the archi- 
tecture is believed by speech experts to be inadequate for significant performance improvements. There 
appears to be no interest in pursuing new designs to make NETtalk commercially competitive. 

Response Time: The simple NETtalk system could be implemented adequately using a personal com- 
puter. 

Knowledge Acquisition/Representation: NETtalk was demonstrated in an amazingly short time be- 
cause of the learning, although it is not clear that the same could be achieved with a neural network system 
that achieved performance levels competitive with commercial products. 

Physical Characteristics: A VLSI implementation of a NETtalk-like system might be more appealing 
for certain applications, like portable aids for the handicapped, if it were implemented in custom VLSI, 
which is certainly feasible for simple multi-layer networks. 

Projection: The future of text-to-speech synthesis by neural networks is uncertain, needing perfor- 
mance improvements and perhaps even VLSI implementation to produce an interesting product. 
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3.7.2    Speech Recognition Using Neural Networks 

The application of neural networks to speech recognition is covered in detail in Part II, Chapter 9 of 
this Report. 

3.8    MACHINE VISION 

Machine vision has evolved from a branch of artificial intelligence into an independent field of research. 
The objective of machine vision is to enable machines to "see" - that is, to use visual sensors to avoid 
obstacles, to detect and recognize objects of special interest, to monitor scenes, etc. 

This field is still an active research area, although there is a considerable amount of commercial activity 
connected with industrial robotics applications. The techniques currently used in machine vision are the 
result of a combination of various disciplines, which at the very least include physical optics, signal pro- 
cessing, computer science, biophysics, neurophysiology and cognitive science. David Marr first espoused 
the treatment of vision as an information processing problem and this view is now widely accepted. More 
recently, the vision problem has been approached as an "inverse optics" problem, which is an ill-posed 
problem in that it is under-determined without imposing additional conditions or constraints on the allow- 
able solutions. In biological systems, it is the knowledge embedded in these systems which allows them 
to solve the inverse optics problems and extract useful information out of noisy and partial information 
contained in scenes. Thus, machine vision systems are information processing systems which have to 
solve under-determined problems with the use of specialized knowledge. 

The work in machine vision can be broken into "early vision" and high-level vision. Early vision was 
described by Marr as going from images to surfaces. The job of early vision is to extract information about 
surfaces from input images, such as boundaries of different surfaces, as well as surface shape, motion, 
color, depth, and texture. Early vision can be regarded as consisting of a set of processing modules, each 
of which extracts certain information from images in a "bottom-up" fashion. High-level vision has the 
function of organizing and controlling the flow of information from these modules and combining this 
information with "high-level knowledge" to analyze, understand, and use visual inputs in other tasks. 

It is impractical to present a complete description here of the state of research in machine vision, includ- 
ing an assessment of the overall impact that neural networks have had on the field (for more information, 
see Part II, Chapter 8 of this Report). Suffice it to say here that neural networks are indeed having a 
significant effect on machine vision; the Technology Assessment Panel will try to illustrate this effect by 
discussing only a few different areas of machine vision. 

3.8.1    Image Segmentation 

The purpose of image segmentation is to partition a two-dimensional array of image samples into dis- 
joint subsets, each of which represents a different region or surface in the scene. This partitioning can be 
done on the basis of some property or characteristic of the image samples, such as the intensity or perhaps 
Doppler velocity (which can be provided by some optical radar sensors), or as being part of a textured 
pattern in the image. Two basic approaches to image segmentation have been used: 
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• Finding the bounding contour of a region, 

• Grouping image samples with a common property. 

One approach works on the edges of regions and the other works on the interior of regions. The edge- 
based approach is a traditional method that has been in use for many years, employing spatial filters to 
enhance the parts of the image where the samples change character, and using nonlinear operations to 
define edges of regions or surfaces. The region-based approach uses techniques such as "region growing" 
and morphological filters to fill in the interior and smooth out the boundary of a region in the image. These 
approaches classify image samples (pixels) based on the use of local operations. Although many machine 
vision systems use these techniques to define surfaces or regions within an image, they are by no means 
standard or universally agreed upon as the best way to do segmentation. 

Because of the inadequacies of the traditional segmentation techniques, another approach has emerged 
in the last four or five years: stochastic modeling, in which image samples are considered to be generated 
by a random process that changes its statistical properties from region to region. The random process that 
generates the image samples is a two-dimensional analog of a Markov process, called a Markov random 
field (MRF). Image segmentation is then considered as a statistical estimation problem in which the system 
calculates the optimal estimate of the region boundaries from the input image. The estimation problem 
includes simultaneous estimation of region properties as well as the boundaries of the regions, and results 
in a set of nonlinear estimation equations that define the optimal estimate of the regions. In this statistical 
formulation of the problem, the processor must find the maximum a posteriori probability estimate of the 
image segmentation. 

Geman and Geman showed in 1983 that this problem can be recast into the minimization of an energy 
function, which, in turn, can be solved approximately by optimization techniques such as simulated an- 
nealing [5]. The interesting point is that simulated annealing can be implemented using a neural network 
with local connections, in which the network iterates or relaxes into a global solution using these local 
operations. The MRF provides local constraints on the image samples, but it is now well-known that these 
local constraints uniquely determine the class of probability distributions over the whole image. Thus the 
MRF actually imposes local constraints that imply global properties, and the estimation theory approach 
attempts to make best use of the constraints provided by the MRF model. 

The MRF approach has not yet been developed to the point where very complex scenes can be modeled 
completely and processing algorithms and/or neural networks implemented to solve the segmentation 
problem for all time. There remains more research to do on modeling images and implementing efficient 
and accurate approximations to the optimal estimators. But the connection between early vision, statistical 
estimation theory, approximation techniques, and neural networks has been firmly established, and there 
is a rapidly growing literature on this new direction of research in machine vision. The work on simulated 
annealing provided the original connection between solving a difficult nonlinear estimation problem and 
using a neural network to produce approximate solutions. 

The segmentation problem can also be treated as an ill-posed problem which can be solved as a vari- 
ational problem with constraints on the set of allowable solutions [24]. Variational problems can also be 
recast as energy minimization problems, again leading to neural networks which can provide approximate 
solutions to the minimization problem. The construction of an energy function which constrains the image 
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segmentation process to produce good solutions is currently the subject of research as an alternative, but 
related, approach to that of using MRFs. 

In another approach, Grossberg and Mingolla have formulated a neural network model that combines 
boundary processing with region-based processing to arrive at an overall solution to the segmentation 
problem [7]. Their model involves the solution of a large set of nonlinear partial differential equations 
(PDEs), which is a time-consuming task on current digital computers. However, the model could someday 
be directly implemented in analog hardware to operate in real time. There is still more research to do to 
optimize the many parameters of the model before making the investment to go to hardware. Energy 
functions are used in this work to establish the stability of the dynamical system defined by the PDEs, 
reinforcing the notion that this type of analysis is basic to neural networks and to early vision. 

It is clear from this very brief summary of current directions in one area of early vision - segmentation 
- that neural networks are inseparable from machine vision, and are actually in the mainstream of cur- 
rent research, being viewed as someday becoming part of massively parallel processing architectures for 
realtime machine vision systems. 

3.8.2    Learning A Color Algorithm From Examples 

The observed brightness or irradiance of a surface element in an image is the product of the illumination 
intensity falling on that element and its reflectance. When the illumination is not uniform across a surface, 
the observed brightness varies across the surface and cannot readily be separated from a variation of 
reflectance across that surface. That is, the problem of separating surface reflectance from illumination is 
ill-posed, or under-specified. Yet biological organisms do this separation all the time. The explanation is 
that they use knowledge about the nature of natural illumination and surfaces that allows them to separate 
these two functions under certain conditions. 

Poggio and Hurlbert have formulated a model for color perception that produces color constancy in the 
presence of varying illumination [21). It is similar to other "retinex" models, in particular to one presented 
by Edwin Land, that had been based on physical optics considerations. The question that they then ad- 
dressed was whether such a color model could be derived purely from examples. The point was not to 
establish that biological systems actually adapted themselves during a certain period of their development, 
but rather to demonstrate that there exist mechanisms that could be implemented in biological systems that 
could solve ill-posed problems by using examples rather than physics. 

In the Poggio/Hurlbert color constancy model, logarithms are used to express the log of the observed 
brightness as the sum of the log reflectance and log illumination. The question posed was how to separate 
these two quantities from observing only their sum. This is clearly an ill-posed problem. One approach 
is to constrain the allowable types of functions that the system could produce as outputs. To do this, it is 
assumed that the surfaces had constant reflectance within their boundaries and that the illumination had 
a smooth variation across the surfaces. A variational problem is then formulated to minimize the mean 
squared error in approximating a brightness input corresponding to a Mondrian figure by constructing it 
as the sum of a smoothly tapering function (the illumination) and a function consisting of jumps between 
constant values (the reflectance). 
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Poggio and Hurlbert showed that such an ill-posed problem with a mean squared error constraint leads 
to a linear filter as the best solution. When such a linear operator is postulated, the parameters of the linear 
operator can be estimated from a set of examples for which the input brightness function is given as well 
as both the reflectance and illumination. 

To simplify calculations, Poggio and Hurlbert used a single scan line of a grey-scale Mondrian for each 
example. They then used many such examples to solve for the linear operator that best separated the 
inputs. And then they tested the operator on test data to see how it worked. They also examined the form 
of the operator to compare the processor derived from the training examples with the models derived from 
physics. They found that, indeed, the linear filter derived from training "was qualitatively the same as that 
which results from exploiting spatial constraints on reflectance and illumination." They only needed to 
assume the correct form of the operator to solve this class of ill-posed problem. 

In summary, this work on learning a model for color constancy from examples has not led to a new 
model. However, it does establish that (a) interesting processing problems can be solved by evolving a 
processing operator from a large set of training examples for which the correct solution is known for each 
input, and that (b) the "learned" solutions can, under certain conditions, turn out to be the same as those 
which exploit special knowledge about the inputs in order to solve an ill-posed problem. 

Restated differently, it does appear feasible to extract the specialized knowledge to solve an ill-posed 
problem by using a learning algorithm together with a large set of training examples. In the words of 
Poggio and Hurlbert, their results suggest that, "evolution may recover and exploit natural constraints 
hidden in the physics of the world." This work illustrates the influence of neural networks, and notably 
the idea that such networks can learn, on the thinking of workers in the field of machine vision. 

3.8.3    Visual Motion 

The movement of objects in our visual field is a very important source of information for many tasks 
- such as detecting threats, navigating to avoid objects, and determining the three-dimensional structure 
of objects from observing their motion, to name only a few. The motion of objects can be estimated from 
sequences of images using two basically different approaches. One relies on the spatial and temporal 
gradients of image intensity, and the other is based on image-to-image tracking of a set of extracted features 
of objects. 

Both of these approaches have been pursued for some time to extract object motion from image se- 
quences, and there is abundant literature on this work. However, new directions are currently emerging in 
both approaches which are based on processing image sequences using a locally-connected array of simple 
processors. One of these approaches offers the opportunity for direct analog implementation which could 
provide realtime extraction of motion parameters for use in higher-level processing. These implementa- 
tions could also be compact processing systems which would be suitable for space-and weight-constrained 
robotic applications. One such design for a "retina" has been implemented by Carver Mead [16], providing 
a concrete example of what these new approaches offer for the future, when implemented in appropriate 
technology. 

The intensity gradient approach has been pursued in Poggio's laboratory, most notably by Christof 
Koch [22,9]. There, they begin with the observation that all early vision problems that attempt to recover 
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properties of visible three-dimensional surfaces from two-dimensional intensity arrays are ill-posed prob- 
lems [23]. This includes edge detection, binocular stereo, and estimation of the velocity field from optical 
flow. Thus, the estimation of object motion from optical flow involves the solution of a variational prob- 
lem with constraints based on physical considerations, or the determination of a maximum a posteriori 
(MAP) estimator for a Markov random field (MRF) model which embodies knowledge in the form of a 
priori probability distributions. The solution of these difficult nonlinear problems can be approached by 
means of minimization of appropriate energy functions, as was discussed earlier in this section on machine 
vision. 

Koch, et ai, have recently shown that optical flow can be obtained using analog resistive networks to 
process image intensity data [9]. They also show that smoothness constraints to solve the ill-posed problem 
do not provide good definition of velocity at object boundaries. To offset this, they adapted the approach 
of Geman and Geman by defining an energy function which included terms that encouraged the insertion 
of sharp intensity edges at object boundaries [5]. They then showed that this form of the energy function 
leads to good velocity estimates within object boundaries and clearer definition of velocity discontinuities 
for velocity segmentation of the image. This non-quadratic optimization problem can be solved using 
simulated annealing, as Geman and Geman did. But Koch shows that, again, an iterative approximation 
procedure can be used to obtain solutions which are qualitatively similar to those obtained from simulated 
annealing, and this iterative procedure can be implemented using an analog resistive network. 

Even with the approximations used in these computations, it takes considerable computational effort to 
obtain velocity estimates for image pairs, even on a multiprocessor computer such as the Hypercube. For 
this reason, direct implementation of these networks in analog VLSI is of great interest to simultaneously 
realize realtime processing speeds and compact processors. An ordinary CMOS process can be used 
to realize a compact resistive network using transistors running in the subthreshold range. A similar 
network has already been built by Mead to implement a 48-by-48 pixel "silicon retina" on a single chip that 
attempts to emulate the first stages of processing of the vertebrate retina [16]. This chip contains integrated 
photoreceptor and processing elements that generate realtime outputs which correspond to retinal ganglion 
cells. The retina chip uses light as an input, and processes this input to produce a representation which is 
(relatively) faithful to a biological retina. The chip is one quarter of a square centimeter, consumes 100 
microwatts of power, and operates in real time. 

An entire visual system would be composed of many stages of processing, the first of which could be 
implemented (in the near future) in the form of a chip such as this one. The efforts of Mead and co-workers 
illustrate two points: 

• Early stages of biological processing appear to be reasonably well understood, and 

• Biological processing, when understood, can be implemented quite successfully in 
hardware - even when using technology that is very different from the wetware of 
biological systems. 

The development of a complete visual system in special silicon chips or wafers, however, will require 
a deeper understanding of the higher levels of visual processing than is now available. The pursuit of 
this approach to information processing systems will have to rely on the neurosciences to increase present 
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understanding of how such biological systems function. Perhaps the study of invertebrate imaging systems 
will help. 

The feature-tracking approach to obtaining object motions from a time sequence of images has a num- 
ber of difficulties associated with it. First, the extracted features must be robust - i.e., must be reliably 
extracted in image after image as the object moves and changes aspect. Then the features must be correctly 
associated from image to image. In spite of these complexities, feature tracking can provide quantitative 
velocity information about motion of objects. 

To illustrate the principles involved in this approach, consider the problem of estimating the velocity of 
a set of point targets from a sequence of images or frames. Each image is a binary image with only a few 
pixels that are "on" (say, white), and successive frames show the positions of the targets as they move. 

This is similar to the problem of tracking multiple objects in space using an optical sensor, or for tracking 
individual features that have been extracted and displayed in a feature map for several complex moving 
objects in a scene. If the targets (points) move farther in successive images than the average separation 
between points in any one image, it will be difficult to tell which pairs of points in two successive frames 
correspond to a single target or object. Similar difficulties arise when some of the points are occasionally 
missing in some frames and when some "extra" points appear in some images at random locations. 

This problem was attacked by workers at TRW in the context of optical tracking of space objects [ 1 ]. 
They have formulated the problem as an energy minimization problem by constraining the range and rate 
of change of velocities of targets, and have used a Hopfield network to do the frame-to-frame association 
of targets. This is similar to the approach that would be taken in treating this as an ill-posed problem. 

Recently, Waxman and Bergholm have devised a novel approach to this problem of visual motion esti- 
mation using dynamic features based on what they call "convected activation profiles" [32]. Each feature 
of a feature map causes an activation pattern that diffuses outward from the initial locations of the feature 
and also decreases with time. This spatio-temporal activation pattern is the activation profile of a single 
feature at a single instant of time. When the feature moves from frame to frame, each occurrence of the 
feature produces a new activation profile which is superimposed on the previous ones. The activation pro- 
file of a moving feature also moves with that feature and is thus said to be "convected." The specific form 
of the activation profile that Waxman and Bergholm chose is a Gaussian shape, centered on the feature 
providing the activation, with fixed variance and with a Gaussian decay over time. The activation profile 
of a feature map is just the convolution of the feature map with this Gaussian kernel. 

The activation pattern produced by a moving feature is just a moving pattern with the past decaying 
away over time. The activation provides a means for a feature to make itself "felt" at nearby locations 
and for a certain amount of time. A moving feature will produce a superposition of the kernel activation 
profiles which overlap if the spatial and temporal parameters of the kernel are chosen properly. This 
overlapping actually serves to solve the frame-to-frame feature association problem. It turns out that an 
estimate of the velocity of the moving feature can be obtained as a ratio of certain partial derivatives of the 
activation profile - namely, the ratio of the time rate of change of the gradient of the activation and the local 
curvature of the activation at any point. Of course, the accuracy of the velocity estimate depends on the 
relationship between the velocity and the parameters of the activation kernel (spatial and temporal decay 
constants). Accurate velocity estimates for a wide range of velocities would require a bank of different 
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activation profiles, which could be realized in this model as an activation which diffused over image space 
with time. Sampling this time-varying activation at various times would correspond to velocity filtering. 

Multiple features closely spaced will produce activation patterns that interact with each other, influenc- 
ing the accuracy of velocity estimates. If different features are separated by more than the spatial extent 
of the kernel, there will be little interaction in any single frame. Again, the parameters of the kernel must 
be carefully chosen to extract velocity accurately. Slowly moving features could be processed by narrow 
kernels, limiting the velocity to small values to achieve accurate estimates. 

This scheme for obtaining velocities of features is very new, and there are many issues that must be 
worked out to establish it as a practical approach to visual motion processing. Some of these issues are: 

• The effects of noise, 

• The robustness of feature detection, and 

• Optimal choice of kernel parameters for discrete spatial sampling and discrete time 
sampling. 

Nevertheless, it appears to be very promising, achieving frame-to-frame feature tracking without explicitly 
solving the feature association problem. The motion of features is derived from the dynamics of the activa- 
tion profiles, involving simple convolutions with feature maps. The activation profile can be implemented 
by driving a diffusion network with a feature map, either continuously in time or with time-discrete inputs. 
This same diffusion network could provide a bank of velocity filters by sampling it at different times as 
it continues to diffuse, even ascribing several different velocity interpretations to a single feature. Such a 
diffusion network could be implemented in analog circuits for realtime processing speeds, which would 
provide a significant step toward realizing a realtime image motion analysis system - which presents an 
insurmountable computation load to conventional processing schemes. The use of diffusion networks has 
recently been applied to feature extraction in an object recognition system, and the approach looks very 
promising in this context also [28,27]. 

3.8.4    Summary of Machine Vision Applications 

Even though machine vision is one area that clearly needs massive parallelism for fast processing, it 
may be somewhat surprising that neural networks are in the mainstream of the new directions in this field. 
Problems of early vision - such as edge detection, image segmentation, motion, and stereo - are being 
formulated as ill-posed problems which can be solved using variational methods which lead to energy 
minimization problems. 

Another new approach is the use of statistical models, such as Markov random fields, which lead to 
maximum a posteriori probability estimators that are nonlinear and also involve minimization of an energy 
function. It has been shown that these problems can be solved using resistive networks which can be 
implemented in analog VLSI for realtime solutions. 

Similarly, in the area of deriving object motion from image sequences, diffusion networks have been 
shown to be extremely useful in extracting velocity information from feature maps. These networks also 
can be implemented in the form of locally-connected neural networks. 

45 



An important feasibility demonstration of early vision processing functions in analog VLSI is provided 
by Mead's silicon retina, which detects moving objects in an image plane. This retina, implemented on 
a single chip, can perform its processing functions in realtime, and establishes the value of this approach 
to providing modules for front end processing in machine vision systems. It is very likely that one of the 
earliest significant contributions of neural networks will be early vision modules implemented in analog 
VLSI, and used in combination with conventional techniques in a machine vision system. 

High-level vision functions are much less well-understood and the prognosis for solutions of any type 
are harder to foresee. Basic problems remain in the areas of representations, modular processing architec- 
tures, top-down system control, and matching techniques for object recognition. The biological systems 
are not well-understood at these levels yet. Pattern classification methods may be the first approach to 
these high-level vision problems, until neuroscience can furnish more knowledge to guide the pursuit of 
new concepts. 

In summary, the value of compact, fast, robust processing modules for robotic vision applications is 
clear. The field of machine vision has diverged from conventional AI to meet these unique needs and, 
as a result, is currently pursuing techniques that are more in the spirit of neural networks than of AI. 
Analog VLSI hardware has been demonstrated as a workable technology for implementation of early 
vision functions, and neural network modules could be embedded in the near future in machine vision 
systems using standard technology. More fundamental work is needed to solve the problems of higher- 
level vision functions. 

Comparison Assessment Summary: 
Machine Vision Applications 

Application: Low-level vision processing. 

Accuracy: Neural network approaches have not yet surpassed conventional methods in performance, 
but they have been under development for only a short time. 

Response Time: The neural network approaches are aimed at VLSI implementation to achieve pro- 
cessing speed through massive parallelism, but only Mead's hardware system has achieved this promise 
to date. 

Knowledge Acquisition/Representation: Early vision processing modules do not usually incorporate 
learning, and the algorithm development process is more like conventional analytical approaches. 

Physical Characteristics: The intended VLSI implementations of modules will produce compact pro- 
cessors with very high information processing rates 
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Projection: Although there is very little neural network hardware today that exploits massive paral- 
lelism in early vision processing, the current directions in algorithm development are driven by the desire 
for practical VLSI implementations to achieve compact and realtime processing for vision systems. The 
algorithms are not yet mature, but they appear to be very promising, and experimental VLSI chips and/or 
wafers could start appearing regularly in two-to-four years. A second generation of VLSI processors 
could appear in four-to-six years. This second generation might be adequate for use in a practical vision 
processing module in a real vision system in, say, six or more years. 

High-level vision is not well enough understood at this time to make projections relative to the contri- 
bution of neural network processors. 
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4.   CONCLUSIONS CONCERNING THE ASSESSMENT OF NEURAL NETWORK 
TECHNOLOGY 

4.1    CURRENT STATUS OF NEURAL NETWORK TECHNOLOGY 

Neural networks represent a unique "style" of information processing that is viewed by many as promis- 
ing very important benefits, such as: 

• Processing speed through massive parallelism, 

• Learning as a means of efficient knowledge acquisition and embedding, 

• Robustness with respect to fabrication defects, and 

• Compact processors for space- and power-constrained applications. 

In the course of trying to compare neural networks with conventional approaches to information pro- 
cessing, it became clear that the volume of commercial business in neural network systems is quite small 
at this time, and that there are few practical neural network systems functioning in the field right now. 
Currently, almost all of the activity in this field is aimed at trying to understand neural networks and to 
develop and demonstrate their capabilities in simple applications. 

Almost all applications of neural networks are implemented at this time in the form of an al- 
gorithm running on a digital computer, which does not provide much information concerning the 
processing speed, robustness, or compactness of a hardware implementation. In fact, there is very 
little neural network hardware operating at this time, and all of it is experimental. 

One outstanding example of hardware which does indeed lend credibility to the "promise of neural 
networks" is the silicon retina built by Mead and his associates, which does realtime processing of moving 
objects with a single chip plus ancillary circuitry that fits on a single circuit board. This chip is, however, 
experimental, has a very small retina, and is not ready for use in a practical machine vision system at this 
time. 

All other neural network hardware in existence at this time is experimental, consisting of silicon chips 
and optical implementations of some of the standard neural network configurations, such as Hopfield net- 
works, multi-layer perceptrons, feature maps, etc. In the area of signal processing, the adaptive equalizer 
- which consists of a single adaptive, linear neuron - is in widespread use, but the Technology Assessment 
Panel does not really consider such a simple adaptive linear system to be a neural network in the context 
of this Report. About a decade ago, a small company marketed a word recognizer that was really a neural 
network designed by Tom Martin in his Ph.D. thesis [31]. This recognizer outperformed all others on the 
market at the time, but was surpassed by the new designs of the 1980s, and it appears that this company 
is no longer in business. 

Thus, there are no possibilities of neural network hardware demonstrating the benefits of pro- 
cessing speed, robustness, and/or compactness in practical systems at this time. And there appears 
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to be much research and development remaining in order to realize these benefits of neural network 
hardware implementations. 

Of what value are neural network algorithms running on a digital computer (referred to here as computer 
simulations)? The few commercial products on the market today are of this form. These are mainly in the 
area of pattern classifiers, where neural networks have been shown to provide performance competitive 
with traditional pattern classification techniques. Among these are trainable neural network classifiers for 
loan underwriting, hand-printed character recognition (including Japanese Kanji characters), and recog- 
nition of protein sequences in studies of DNA. 

Computational maps for control of robot manipulators require neural networks of modest size and pro- 
cessing speed; these have been successfully demonstrated using digital computer implementations, but 
again, these are in experimental systems at the present time. 

Applications of neural networks to signal processing problems have been in the form of computer sim- 
ulations, and some interesting performance improvements have been demonstrated in the area of adaptive, 
nonlinear prediction of chaotic behavior. In the more traditional context of waveform estimation, the ad- 
vantages of adaptive, nonlinear signal processors using neural networks have not been outstanding relative 
to adaptive linear systems, but there seems to be promise in the area of signal processing. 

Neural networks are also being studied for application to machine vision systems - in particular, for 
early vision processing functions. Promising algorithms for image segmentation, object motion, and stereo 
have been developed and demonstrated on digital computers, but the computational load associated with 
early vision processing is too large for considering practical machine vision applications in the form of 
computer simulations. In fact, the area of machine vision points out the need for powerful neural network 
simulation machines to speed the development and thorough evaluation of neural network algorithms 
suitable for hardware implementation. 

The study and development of neural network algorithms are providing the impetus for new con- 
ceptual approaches to such problems as pattern classification, robotic control, speech recognition, 
and machine vision. New parallel, adaptive algorithms are emerging which may be useful in practical 
applications even when running on a general-purpose digital computer. Certainly, evaluation of new al- 
gorithms on computers is a necessary step in the development of algorithms - no matter how the final 
implementation is done in a practical system. But the benefits of neural networks implemented as al- 
gorithms running on digital computers are limited compared to hardware implementations, which 
can provide fast as well as compact realizations of neural network processors. 

In summary, the current status of neural network technology is fairly immature, with only a few practi- 
cal systems operating in the field, and these in the form of computer simulations. Parallel adaptive neural 
network algorithms are contributing new approaches to many information processing problems. Neural 
network hardware is in the experimental stage, with at least another generation of hardware devel- 
opment needed before it is likely that neural network chips will be used in an operational system. 
Thus, at the present neural networks have not demonstrated most of the benefits of greatest interest - i.e., 
massive parallelism, learning, robustness, and compact processors. 
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4.2    EXPECTATIONS FOR NEURAL NETWORK TECHNOLOGY 

The application of neural networks to a variety of problems has been discussed in order to evaluate and 
illustrate their utility; in a significant number of cases, neural networks have matched or slightly exceeded 
the performance of conventional solutions to these problems. Given that many of these neural network 
solutions represent the first attempt to solve these problems with this new technical approach, their results 
constitute a rather encouraging achievement. 

In many cases, the neural network solution was an alternative implementation of an existing solution. 
Even so, the neural network solution often offers the potential for compact implementations with rapid 
response time, which, in itself represents a "value-added" contribution to the existing solution. But one 
can reasonably expect that successive attempts at neural network solutions will ultimately lead to unique 
and more appropriate applications of neural networks to these problems - with potential for dramatically 
improved performance. The field of neural networks needs a period in which to get away from mimicry, 
to build on this early experience and develop its uniqueness, before being critically evaluated with respect 
to its future potential. Thus, although there are few practical neural network systems functioning in the 
field today that illustrate the true potential of this technology, the experience to date has been encouraging 
in many areas, and one should expect that the technology will only get better with more experience. 

4.2.1 Pattern Classification 

Perhaps the surest projection is relative to neural network pattern recognizers. Neural networks can 
be used to implement many standard pattern classification algorithms, and they have also led to new 
classification algorithms. Neural networks provide a means of realizing complex map functions using 
training examples, which is the essence of pattern recognition systems, so this success should not be 
surprising. 

For simple pattern classification problems, neural network systems will continue to be implemented as 
computer simulations. But for more demanding applications, such as "smart" weapons, neural network 
hardware will offer compact processors in the next few years, especially for simple problems. As an 
example, a proximity fuze for a smart weapon can be realized by a multi-layer neural network, which in 
turn, can be implemented on a single chip within the next two years. More complex pattern classification 
problems may be addressed by neural networks, but the key issue here is the representation problem. 
When good representations can be found, good neural network solutions can usually also be found. A 
thorough understanding of the representation problem is essential to the success of neural networks, and 
there is a great deal of basic work to be done in this area. 

4.2.2 Robotics 

Neural networks will most surely appear in robotic manipulators in the form of computational maps for 
trajectory control. These problems require neural networks of modest size and speed, and they have been 
successfully implemented so far only as computer simulations, but neural network hardware for robots is 
definitely feasible and could appear in robots in two-to-four years. 
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The harder, more general problem of trajectory control under constraints (e.g., avoiding collisions with 
obstacles) has not yet been solved using neural networks, and the widespread and standard use of neural 
networks for robotic control problems of this level cannot be projected at this time. 

4.2.3    Machine Vision 

Although the general area of machine vision will require years of research before any clear cut solu- 
tions are established, the problems of early vision are well understood and are very important since they 
give rise to a huge information processing load which currently dominates the performance of the entire 
vision system. The recent focus on neural network algorithms for early vision functions that can be imple- 
mented as analog VLSI networks is aimed at relieving this bottleneck. Mead's experimental silicon retina 
demonstrates the basic feasibility of the analog VLSI approach to realizing compact realtime processors 
for early vision, although the design is not mature enough for practical systems at this time. A number 
of new algorithms under development will be approaching readiness for silicon implementation, and ex- 
perimental chips for these early vision functions could start appearing in two-to-four years, with second 
generation designs coming in four-to-six years. These are massively parallel, non-adaptive processors that 
may require new techniques in analog VLSI for practical implementation. It does not appear feasible to 
expect neural network implementations in analog VLSI modules for early vision functions in less than six 
years, and it could take considerably longer if the analog VLSI technology required is more demanding 
than that used by Mead. 

High-level vision functions are not well understood at this time and so no predictions can be made 
relative to any kind of practical implementations in this area. 

4.2.4    Signal Processing 

In the area of signal processing, neural networks have been tried with some success, although there are 
no practical systems in the field yet. The adaptive equalizer points out the usefulness of adaptive systems 
for certain signal processing problems. 

Neural networks can provide an adaptive, nonlinear capability that will most assuredly be useful in 
some signal processing applications. Theoretical approaches to nonlinear filtering are very difficult, and 
the adaptive system approach may again prove, as in the case of the adaptive equalizer, to be the practical 
way to solve some class of problems. Therefore, even though no such signal processing applications are 
known at present, the capabilities of neural networks in providing adaptive, nonlinear signal processing 
will prove useful in some class of problem in the future. More demanding problems could also benefit 
from hardware implementation of a neural network solution. 

4.2.5    Speech Applications 

There are several different aspects of speech applications that must be considered relative to neural 
networks. 
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Text-to-speech synthesis. The area of text-to-speech synthesis systems has been discussed in some 
detail earlier. NETtalk was able to achieve an interesting level of performance in the text-to-phoneme 
translation stage of speech synthesis, and it was able to do this very rapidly compared to the time scale 
required to complete a rule-based system for acoustic-phonetic rules. However, it appears (to the experts 
in the speech synthesis field) that the architecture used in NETtalk is not rich enough to ever get to the 
performance level of the systems based on acoustic-phonetic rules, regardless of the size of the training 
set and training time. Practical text-to-speech systems are now available on the commercial market at 
reasonable prices, and so neural networks are not likely to contribute anything to this area, unless a funda- 
mentally new approach is tried and proves capable of better performance than present systems. This not 
likely since the present systems perform quite well and a long development time would be required. That 
is, there is no market that is demanding better performance and no motivation to invest in radically new 
concepts. 

Word recognition. Intensive effort is now focussed on the word recognition problem, with the current 
leader being the hidden Markov model (HMM) approach. The front end processing problem in speech 
is not nearly as demanding as that of vision, and so programmable digital signal processor chips provide 
compact solutions to this aspect of the problem. In speech, it is the higher-level problems that are receiv- 
ing the research effort and reasonable progress is being made. The severe computational demands in word 
recognition will arise as systems capable of handling very large vocabularies are attempted. In the case of 
HMM systems, the number of word models that must be processed grows with the vocabulary size. Lipp- 
mann has shown that the HMM word recognizer, currently implemented using digital computers, can be 
implemented using neural networks, but it remains to be shown that practical neural processing elements 
can be built to carry out processing functions now done in floating point calculations without degrading 
performance. This evaluation effort will be carried out in the next two years. If neural network implemen- 
tations prove practical for the HMM word recognizer, then experimental neural network hardware could 
be fabricated in two-to-four years for recognizers with vocabularies of hundreds of words; experimental 
recognizers with vocabularies of thousands of words could be expected in, say, four-to-six years, if this 
HMM approach is feasible. If this approach is not feasible, then a new concept for the application of neu- 
ral networks to word recognition will have to emerge. There are several approaches being studied at this 
time, so such a new approach might emerge in two-to-four years, slipping the whole schedule for neural 
network hardware for word recognition by at least two-to-four years. 

Continuous speech recognition. A much more difficult problem than isolated word recognition, con- 
tinuous speech recognition is still in the basic research stage, with no approach mature enough at this time 
for hardware implementation. Neural networks may indeed provide a new viewpoint that ultimately leads 
to a good solution, but this is not apparent at present. The extent of the contribution that neural networks 
might make to this problem thus cannot be projected at this time. 

4.2.6    Autonomous Neural Systems 

What about a complete autonomous system constructed entirely out of neural networks, such as a sub- 
mersible vehicle, or a land rover for planetary exploration? Such systems must include several major 
subsystems for basic functions - including sensory processing, data fusion, motor control, and higher 
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cognitive functions like reasoning and planning. A complete sensory perception system implemented en- 
tirely using neural networks is considerably farther in the future than the six-plus years projected for analog 
VLSI modules for early vision functions. Some effort has gone into applying neural networks to cognitive 
functions, but there were no careful comparisons presented to this Study for detailed consideration. 

The area of planning, which has been an active (and somewhat successful) area in Al, has received 
slight attention in the neural network field, although there appears to be no fundamental incompatibility in 
applying neural networks to planning problems. Thus, it appears that new applications of neural networks 
in higher cognitive functions, such as reasoning and planning, would have to achieve some degree of 
success before such a project could be expected to succeed. 

There is so much more study and experimentation to do in neural networks that it is impossible to 
estimate exactly when an autonomous system constructed entirely of neural network components might 
become a reality. It certainly appears to be longer than 10 years, putting it into the 21st century - too far 
in the future to project with any accuracy, and essentially irrelevant with regard to influencing the details 
of a near-term neural network research program. 

4.3   CONCLUSIONS REGARDING NEURAL NETWORK TECHNOLOGY 

On the basis of this comparison of neural networks with other information processing technologies, the 
following conclusions appear to be a fair assessment of neural network technology: 

• Neural networks offer significant potential benefits for information processing, such 
as knowledge acquisition through learning, fast processing speeds, robustness to 
implementation defects, and compact processors. 

• The prime candidates for early neural network applications are expected to be in 
the areas of pattern classification, simple computational maps for robotic control 
systems, early vision, signal processing, and speech recognition. 

• Neural network technology is not mature enough at present for widespread prac- 
tical applications, since computer simulations presently are the primary method of 
implementing neural networks while hardware implementations remain in the ex- 
perimental stage. 

• The first hardware implementations will undoubtedly be functional modules for in- 
clusion in systems using conventional technologies. 

• Realizing the potential benefits of neural network technology will require basic re- 
search to advance the technology on several fronts, including: 

- Theory, including representations, efficient learning algorithms, 
stability; 

- Modular architectures, overall system control; and 

- Implementation techniques for silicon and optics. 
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If a government-sponsored program for the development of neural network applications were to be 
implemented, the following recommendations are suggested for such a program to realize the potential of 
neural networks: 

• The prime thrust of the initial phase of such a program ought to address research and 
development efforts to advance the general technology as well as several important 
generic application areas - rather than focusing on a large, complex neural network 
system which would have high visibility and rigid schedules and milestones. 

• The generic application areas to be pursued should be those where success from the 
unique neural network approach is likely and would have an important impact. This 
comparison study indicates that these areas are pattern classification, early vision, 
speech recognition, signal processing, and robotic control. 

• The program should establish a methodology that allows measurement of progress 
toward goals by providing specified performance criteria, benchmark problems and 
databases, and review of unsuccessful as well as successful projects, to make best 
use of experience from the program. 

• Periodic review of progress should be carried out, perhaps in one-or two- year inter- 
vals, to determine when goals can be adjusted or the program focus can be changed 
to implementation of practical applications. 

• A neural network program should assure good coupling to other branches of infor- 
mation processing, neuroscience, and cognitive science to take advantage of con- 
ceptual breakthroughs in the difficult application areas such as vision and speech 
and in the understanding of particular simple biological neural networks, notably 
invertebrates. 

• Advanced implementation technology should be addressed early in the program in 
order to understand the problem of matching algorithms to technology, as well as 
the constraints of silicon and optics, and to support the early development of exper- 
imental neural network hardware. 
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1.   OVERVIEW 

1.1    INTRODUCTION 

"Neural Networks - what are they good for?" This central question guided the Neural Network Study's 
System Applications Panel (Panel 4) in its survey of the field. A number of experts were invited to provide 
an overview and introduction, and 55 researchers reported on 77 potential neural network applications. 
Eleven contributions were selected as primary examples for highlighting the neural network state of the 
art, its range of applicability, and its future potential. The functions performed by these neural networks 
range from linear and nonlinear mappings, to optimization, to such specialized functions as a model retina, 
track interpolation, and automatic segmentation of general imagery. 

Neural networks, in the strict sense, are to be understood as electronic networks which implement 
algorithms and attempt to emulate certain features of biological neural networks. They typically consist of 
a large number of highly interconnected but simple processing elements; by varying the interconnection 
weights according to a "learning rule," the network is expected to provide a variety of benefits - such as 
adaptation to changes in the problem specifications, compensation for faults in the network, and improved 
performance with time. (See Part II: Adaptive Knowledge Processing, Chapter 2: Background and Part 
I: Introduction, Appendix B: Neural Network Glossary of Terms for further explication of the definition 
of neural networks.) 

All of the applications and models reviewed by the Study's System Applications Panel addressed some 
form of learning by mapping input spaces, usually of high dimension, into some interpretive output space. 
A practical taxonomy may start by dividing neural network models into feedforward versus feedback 
information flow classes; this can be further subdivided according to fixed, supervised, or unsupervised 
learning. At the present time mature applications - of which only two have been fielded thus far - tend 
to be supervised feedforward systems with restricted connectivity. Feedforward mapping or classification 
systems offer the shortest development time for a given problem complexity. This is not an accident; 
feedback systems of complexity sufficient for practical applications are much more difficult to develop. 

1.2   NEURAL NETWORK APPROACHES 

Viewed as algorithms, neural networks compete with alternative conventional techniques. (See Part 
III: Assessment of Neural Network Technology for comparisons of neural network and conventional ap- 
proaches in specific application areas.) Researchers generally attempt to apply neural network techniques 
to problems for which "classical" approaches either are difficult or cumbersome, or have failed altogether 
to provide adequate solutions. Often, these are the kinds of problems which biological systems can handle 
easily. Neural network approaches seem advantageous for data-intensive problems and problems dealing 
with difficult and changing environments, as they appear in vision, robotics, speech, database and battle 
management. Specific problems might be, for example, the fusing of many simultaneous data streams in 
a laser radar or the correlation of targets from scan-to-scan in a scanning sensor system. 
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It is difficult to evaluate the performance of proposed neural network architectures. Many architectures 
appear to show "promise" at solving a given problem, yet may - upon further examination - be found to 
be inappropriate, or at least sub-optimal. It is quite easy to define a "toy" problem that will show excellent 
performance in simulations, while real data often present subtle quirks that impede performance. Whether 
being tested with simulated or real data from the field, the quality of the test is critical in evaluating 
the performance of a neural network. There does not appear to be any general method, other than the 
experience of the researcher or his/her reviewers, for determining in advance whether there are "hidden" 
problems inherent in a given approach. 

Benchmark problems and standardized databases need to be developed in the generic areas. While neu- 
ral network research should not be limited by such databases, their availability could enable comparison 
of such key metrics as network size, accuracy, computational load, and training requirements. 

Speed, parallelism, and ease of implementation were most often cited by the researchers as reasons for 
using neural networks, although speed and parallelism are not advantages exclusive to neural network 
approaches. An example of ease of implementation is found in neural network classifiers which can be 
taught without recourse to specific assumptions or knowledge about the probability distribution inherent 
in the data. 

Self-organization and unsupervised learning emerge as additional advantages unique to neural net- 
works. Small-scale self-organization is exhibited, for example, by the common supervised learning ap- 
proaches in the sense that they can, to a limited extent, organize their internal nodes as receptive fields. 
Global self-organization is a much harder problem. Without doubt, the most exciting future applications 
of neural networks will center on systems with some degree of global self- organization. Again, living 
systems provide ample evidence of fine-grained, yet global control structures. 

What is not clear from the current state of neural network research is whether the kinds of circuits now 
being studied have capabilities anything like those of the human (or even a frog's) brain. Researchers do 
not have complete and accurate models of the behavior of biological neurons in isolation or in a network. 
What they do have are a variety of models which can be described in mathematical terms, and which can 
then be simulated on a computer. 

Neural networks - as algorithms - represent "simple," or deterministic, systems - such as mapping 
transformers, feature extractors, pattern generators, and dynamical systems. But, in addition, neural net- 
work systems can also represent "complex" systems. In a certain sense, neural networks allow the proper 
realization of physical phenomena which are normally attributed to living systems. Complex systems, 
in particular, do not permit a complete syntactic description. They can be realized only as complete, 
autonomous entities for which an inherent distinction between hardware and software is not possible. 
"Complex system control structures" are at the core of long-term neural network research and are central 
to the successful development of autonomous sensor systems for reconnaissance and "smart" weapons. 
The time seems ripe for DARPA to broaden the scope of neural network applications and help drive this 
field to greater maturity. 



1.3    REVIEW OF PANEL OBJECTIVES 

As part of the DARPA Neural Network Study, it was the mission of the System Applications Panel 
(Panel 4) to assess the applications potential of neural networks for future military system needs as well 
as survey possible benefits in the civilian sector. In securing adequate sources of funding for a new tech- 
nology area - such as neural network technology - concrete applications potential is of particular concern 
for DARPA. 

In general, a sound assessment of a specific neural network applications potential requires two compo- 
nents: 

• A thorough understanding of the neural network field - its foundations, capabilities, 
and limitations; and 

• A complete and detailed appreciation of the needs and restrictions of any particular 
application. 

The former component was the primary concern of Study's Adaptive Knowledge Processing Panel (Panel 
2), the findings of which comprise Part II of this Report, and the Technology Assessment Panel (Panel 1), 
which presents its findings in Part III; the latter component, meanwhile, concerned the System Applica- 
tions Panel (Panel 4) the findings of which are summarized below. 

The System Applications Panel heard presentations from several domain experts who could provide 
an authoritative overview on areas where neural network technology appears promising - notably vision, 
robotics, speech, battle management, laser radar sensors, and database management. 

In an effort to illuminate the issues in a comprehensive way, the Panel sponsored, in addition, a half- 
day meeting with Richard Feynman and conducted a working lunch with Carver Mead at the California 
Institute of Technology. These contributions were highly informative and can form the basis for a far- 
reaching assessment of future neural network applications, especially in realms for which neural network 
technology has not been applied so far. 

For an assessment of present neural network applications, a survey of workers actively engaged in neural 
network activities seemed more effective. Accordingly, the majority of the speakers interviewed were 
researchers who have implemented practical neural network applications. Typically, these researchers 
have applied their neural network expertise to problems which are difficult or impossible to solve by 
present-day traditional methods. Concise summaries of all 77 contributors are collected in Appendix L.2, 
beginning on page 136. In addition, Appendix L3 [p. 208] reports the results of a questionnaire sent to all 
speakers to help the Panel forecast neural network applications in the longer term. 

From the set of practical neural network applications, the Panel selected 11 contributions as primary 
examples that describe the neural network state of the art, its range of applicability, and its future potential. 
In-depth descriptions of these featured applications, written by the respective investigators, are provided 
in Appendices A-K, beginning on page 43. 

Based on these featured neural network applications, the Panel has attempted to isolate unique neural 
network advantages in comparison with competing technologies and indicate short- and long-range neural 
network research and development goals. 



2.   NEURAL NETWORK SYSTEM APPLICATIONS - STATE OF THE ART 

2.1    PERSPECTIVES ON THE NEURAL NETWORK FIELD 

The field of neural networks has a special attraction, no doubt, because of its association with the human 
brain. It promises, it is hoped, to shed some light on the theoretical underpinnings of the workings of all 
those human faculties - reasoning, vision, speech, locomotion - which have confounded for many years 
the extensive efforts of many researchers, primarily in the field of artificial intelligence, but also in robotics 
and the behavioral sciences, for example. After the initial euphoria, a distinct disillusionment has settled 
in: the view is more prevalent that engineering emulations of such capabilities are not easily achieved and 
that successful solutions to these long-standing problems may even require a new outlook, perhaps a fresh 
approach. 

Without exception, each researcher interviewed by the System Applications Panel expressed an inspi- 
rational fascination in one way or another. Most speakers also felt that research in neural networks will 
enhance rather than supplant the more traditional approaches. In this context, particularly, it is worth 
recalling that interest in neural networks was the driving force at the very beginning of applied research 
into intelligence (artificial and otherwise), and then fell into considerable disfavor; now it basks in the 
irony of the circle seemingly fully turned. Determining to what extent this now-renewed interest in neural 
networks is in fact justified, in terms of applications potential, is the main objective of this portion of the 
Neural Network Study. 

Neural networks, collectively, embody and formalize renewed approaches and efforts aimed at solving 
difficult, anthropomorphically-inspired problems. As indicated in Figure 2-1, strong bidirectional links 
connect the field of neural networks with research on the central nervous system, artificial intelligence, 
and robotics. But neural network research also embraces theoretical efforts aimed at understanding, de- 
scribing, and utilizing the properties of large networks of distributed processors or computing elements; 
this links it to computer science, automata theory, and to other formalized models of self-organization. 
Self-organization is, indeed, a large field in its own right: biology and the questions concerning develop- 
ment of the central nervous system are closely linked, as are physical systems which exhibit "order from 
chaos," as studied in chemistry and physics. 

With such diverse connections, it is not surprising to see the interest in neural networks as widespread 
as it is. One might even wonder whether "neural networks" exists as an independent research effort. This 
Study, however, firmly attests to the separate existence of the field of neural networks: a major factor 
in legitimizing neural networks as a distinct discipline is the unifying goal of utilizing knowledge drawn 
from diverse fields toward the solution of "hard problems" in practical applications. 

Neural network research has resulted in new algorithms for data-intensive problems, and is expected 
to continue to provide more. Neural network research is also aimed at elucidating the problem of control 
structures for complex systems. This is a field in its infancy: standard control theory, although exten- 
sive and useful, typically restricts itself to applications where external perturbations can be regulated by 
linearized control approaches. "Complex system control structures" are at the core of long-term neural 
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Figure 2-1.    Neural Network Associations. 

network research and are central to the successful development of autonomous sensor systems for recon- 
naissance and smart weapons. 

2.2    APPLICATIONS SELECTION CRITERIA 

Given the great interest in neural networks and their large applications potential, some kind of selection 
criteria seemed necessary in order to bound the number of people whom the System Applications Panel 
could interview in a limited amount of time. On the other hand, the major concern for this Panel was 
perceived as the development of an accurate and fair account of all neural network activities which might 
bear on future applications potential. 

With these considerations in mind, it was decided to concentrate speaker selection primarily on work- 
ers in the neural network field who have experience with practical applications. In this way, the Panel 
simultaneously achieved an introduction to the diverse methodologies of neural networks as well as an 
overview of the neural network application potential. However, the Panel did not - according to some 
prior taxonomy for neural networks - choose selected speakers for their specific neural network approach. 

At the outset of the Study, all members of the System Applications Panel submitted a list of suggested 
speakers; this formed the initial set of invitations. As the Study progressed and its exposure increased, the 
Panel also learned of many applications by word of mouth. In all cases, a concerted effort was made to 
follow up on every lead, and no one was rejected who wanted to be heard and could participate. 



Notwithstanding these principles, it is not here claimed that the t System Applications Panel has com- 
pletely covered the entire neural network applications field. Several good applications were presented 
to other panels which are not included here. The Technology Assessment Panel (Panel 1), in particular, 
focused on the comparison of certain neural network applications with other technologies; discussions of 
several additional applications can be found in that Panel's findings in Part III of this Report. 

Based on this open-door policy, maintained throughout the course of the Study, the System Applications 
Panel is confident in having achieved a valid and comprehensive representation of present-day efforts 
aimed at distilling current neural network capabilities into practical applications. Moreover, the Panel can 
now characterize with some confidence the main features of problems where neural network solutions 
seem advantageous: 

• Data-intensive problems, as they occur in vision, for example, and 

• Problems dealing with difficult and changing environments, such as found in robotics. 

Generally, researchers attempt to apply neural network techniques to those problems for which standard 
engineering approaches either are difficult or cumbersome, or have failed altogether to provide adequate 
solutions. Often these are the kinds of problems which biological systems can handle easily. In this regard, 
the Panel held a two-day presentation session focused specifically on biologically-inspired application 
approaches. 

2.3   CATEGORIZATION OF APPLICATIONS 

In an effort to completely survey the field - including workers, primarily in industry, who may have 
started neural network research recently or who have not published at all in the literature - the Panel 
asked DARPA for access to the applications database generated by the DARPA-sponsored neural network 
Broad Area Announcement (BAA). As shown in Table 2-1, the majority of the applications-oriented BAA 
responses fall into eight categories: vision, speech, sonar, radar, signal processing, robotics, dynamical 
systems, and cognitive functions. 

Accordingly, the contributions to the System Applications Panel have been organized along a similar 
applications-oriented structure. The categorization exhibited in Table 2-2 is quite self-evident. In this 
context, the Panel sees signal processing as a catch-all category for any applications which do not explic- 
itly fall into the specific areas described by vision, speech, sonar, or radar. Dynamical systems include 
applications which explicitly deal with time-dependent situations and also cover biology-related topics. 
Decision systems include attempts to utilize neural network approaches for high-level functions, such as 
command & control or battle management - applications which are traditionally addressed by artificial 
intelligence techniques. Theory and survey are two additional categories found in Appendix L.l (p. 129) 
in order to accommodate all speakers. [Specific contributions will be referred to by category according to 
a three-letter mnemonic, for example, THE-1.] 



Category 
Number of Papers 

Submitted    Selected 
Vision 
Speech/Sonar/Radar 
Signal Processing 
Robotics 
Dynamical Systems 
Cognitive Functions 

47 
14 
11 
14 
8 

82 

7 
4 
1 
1 
2 
1 

Non-Applications 110 9 
Totals 268 25 

Table 2-1. 

DARPA BAA Survey Results 

2.4    OVERVIEW OF INVITED CONTRIBUTIONS 

Table 2-2 lists the number of all speakers who addressed the System Applications Panel and their appli- 
cation areas. The Panel interviewed 55 speakers who they presented a total of 77 application descriptions. 

The applications are separated into four groups: 

• Concept stage. These are potential applications for which neural network tech- 
niques appear promising, but no verification has been accomplished or was detailed 
to the Panel. 

• Simulation with synthetic data. This group forms the majority of the surveyed 
applications, particularly for the vision area. 

• Simulation using real-world data. This considerably smaller group demonstrates, 
perhaps most clearly, the application potential of neural network techniques. 

• Hardware development. Again, a smaller group which attests to the real dedica- 
tion toward serious neural network implementations of a few workers, primarily in 
industry. 

It is clear from a quick scan of the Panel's survey results that the field of vision stands out as embrac- 
ing most of the neural network applications. As mentioned, the Panel solicited speakers solely for their 
application potential - independent of category; it is not unreasonable, therefore, to assume that the rel- 
ative frequencies of occurrence of the individual application areas reflect the interest of neural network 
researchers as a group. A similar distribution also emerges from the BAA response (see Table 2-1). 

In order to quantify realistic near-term potential, the Panel subdivided each category into three groups 
based on the estimated time to fielding. A completed, functional neural network system may be expected 
in: 
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• Less than live years, 

• Less than two years, or is 

• Fielded now. 

As of the beginning of 1988. the last group yielded a total return of only two fielded systems. 

Clearly, neural networks constitute an applications field in its infancy, and so the Panel chose to broaden 
our scope to also include applications which, although still in the development stage, seem to offer a high 
degree of novelty, usefulness, or near-term application potential. This last group and the group of presently 
fielded systems are highlighted as "innovative/practical" in the bottom-most row of Table 2-2. It is this 
group of 11 applications which are fully featured in the Appendices A - K. 

2.5    NEURAL NETWORK APPROACHES 

It is interesting to compile not only the application categories which can be solved by neural network 
methods, but also the neural network models which have been utilized in practice. Table 2-3 lists the 
response of all those interviewees who volunteered information about the nature of the model on which 
their application is based. 

For those familiar with the literature, it is probably not surprising that the two most popular approaches 
are the fully-connected multi-layer perceptron using the backpropagation learning algorithm and the content- 
addressable memory (CAM) popularized by Hopfield. What is remarkable, perhaps, is the observation 
that the multi-layer backpropagation network is the only model which has been applied to every listed 
category, save biology. 

In the Panel's selection of the 11 featured applications, the primary concern was with near-term ap- 
plicability; another concern, however, was to select applications which can also serve as representative 
examples for the diversity of neural network approaches. Table 2-4 presents a cross-reference of the neu- 
ral network models listed in Table 2-3 with the set of 11 featured applications. Each featured application 
stands for a distinct neural network model (•), but could also be addressed by other neural network meth- 
ods (o). 

A summary overview on the 11 featured applications is presented in Table 2-5 and Table 2-6. Categories 
for each application include name; purpose; special features; the neural network model used, its function, 
connectivity, the type of learning involved, and its information flow; and the status of the application. 

As can be seen, only the Word Recognizer, using Intel-developed chips, and the Risk Analysis system 
for a large mortgage applications database, using the Decision Learning System developed and marketed 
by Nestor, are fielded systems as of the beginning of 1988. A third application, the Process Monitor, is 
a GTE-developed application for realtime yield assessment of a fluorescent tube manufacturing process, 
and will be coming on line in late 1988. 

A brief description of each of these featured applications, status assessment, near-term prospects for 
fielded systems, and the unique advantages of neural networks are discussed in the sections that follow. 
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APPLICATION PURPOSE FEATURE 

BROOM  BALANCER SIMPLE TRAINABILITY BY CONTROLLER WITH VISUAL 
EXPERT INTERFACE 

PROCESS  MONITOR YIELD PERFORMANCE MANY-SENSOR 
PREDICTION NON-STATIONARY DATA 

WORD RECOGNIZER HAND-FREE  DATA ENTRY MICRO-BASED. 
0 5 s SYSTEM  RESPONSE 

SONAR  CLASSIFIER DISTINGUISH  UNDERSEA DISCOVERING CLASSIFIER 
MINE/ROCK STRATEGIES 

RISK  ANALYSIS VERIFIABLE  DECISIONS LARGE  DATA SET. 
RAPID LEARNING 

FORK  LIFT ROBOT REAL-TIME  ROBOT ADAPTABLE  SENSOR 
CONTROL INTEGRATION 

TARGET RECOGNITION IR SIGNATURE ANALYSIS OCCLUSION TOLERANCE 

IMAGE CLASSIFIER AUTOMATIC  FEATURE SHIFT/ROTATION 
EXTRACTION TOLERANCE 

MODEL RETINA ADAPTIVE AC-COUPLED. SPACE/TIME 
SENSITIVITY/RESOLUTION INTEGRATING 

TARGET TRACKING SCAN-SCAN TRACK SPARSE TEMPORAL 
ASSOCIATION DATA INTERPOLATION 

IMAGE  FUSION MULTI-MODAL DATA CONTEXT-SENSITIVE 
INTEGRATION SEGMENTATION 

Table 2-5. 

Selected Innovative Applications I 
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2.6   DESCRIPTION OF SELECTED APPLICATIONS 

In attempting to isolate advantages unique to neural networks and to assess their short- and long-term 
potential, the Panel's considerations will be discussed with particular reference to the 11 featured applica- 
tions listed in Table 2-5. Each selected application is comprehensively described in a separate Appendix 
written by the authors. Only a brief overview is presented here. 

Three applications utilize simple one-layer neural networks. The Broom Balancer by Tolat and Widrow 
[Appendix A, p. 43; ROB-8, p. 171 ] exemplifies the capability of a single neuron - the Adaline - to learn a 
control problem by "looking over the shoulder" of a human teacher. In the second application, the Process 
Monitor by Sutton [Appendix fi, p. 51; DYN-1, p. 172], a large number of such Adalines are utilized to 
monitor and ultimately control a manufacturing line for fluorescent tubes. To be fielded during 1988, this 
application is considered a substantial improvement over current control techniques in tube production. 
It demonstrates the capability of neural networks to process non-stationary data in a continuous fashion. 
Finally, the Word Recognizer by Hoff [Appendix C, p. 55; SPE-2, p. 153] presents an example of Adalines 
configured as matched filters for speaker-dependent word recognition. This Intel-developed, single-board 
digital implementation represents a complete voice-controlled data entry system fielded since 1983 in 
diverse manufacturing applications. 

Of the many potential applications of fully-connected, multi-layer networks which are adapted by the 
backpropagation learning algorithm, the Panel chose to feature the work of Gorman and Sejnowski on the 
Sonar Classifier [Appendix D, p. 59; SON-1, p. 155]. Of particular interest here is the interpretation of the 
"hidden layer" as self-organized feature detectors which are reminiscent of the clues exploited by human 
operators. As detailed and novel as this work is, it represents but a first step on the long road toward a 
fieldable sonar classification system. 

As an alternative to backpropagation networks for supervised learning, the Panel offers the Nestor- 
developed learning system as applied by Collins et al. to mortgage underwriting - Risk Analysis [Ap- 
pendix E, p. 65; DEC-(2,3), p. 183]. This system is an example of a "network of neural networks" - 
an approach that seems ultimately necessary for most real-world applications. A central controller auto- 
matically assigns and adapts several linked network modules (three-layer "RCE" networks [p. 74] with 
reduced connectivity) and allocates resources dynamically. A number of different pattern recognition 
problems have been successfully solved by the Nestor Learning System [VIS-(11,12,13,14,15), p. 145; 
SPE-3, p. 154]. In the mortgage application, a wide array of evaluation criteria are processed on a large 
data set of historical loan cases; the system is fielded and has shown superior performance as compared 
to human loan evaluators. 

Yet another approach to the implementation of nonlinear mapping functions by supervised learning is 
the "Cerebellar Model Articulation Controller" (CMAC) model developed by Albus [ROB-1, p. 164]. 
Among its features are simplicity (it is essentially a form of look-up table, which results in fast response) 
and efficient learning with user-controllable generalization (i.e., a single learning example influences 
nearby points in state space, which allows a flexible system to be taught by few examples). These prop- 
erties are particularly attractive for realtime robot systems for which the Fork Lift Robot by Jennings 
[Appendix F, p. 81; ROB-5, p. 168] is the Panel's featured example. In this application, a CMAC network 
performs an autonomously guided acquisition task involving several degrees of freedom of robot motion. 
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CMAC provides the calibration for an array of simple laser-diode-based reflection detectors to map in- 
tensity into distance. In effect, the diodes operate as proximity sensors. As with the Broom Balancer, 
this system is initially "taught" by storing the mapping sequences acquired from executing trajectories 
repeatedly by a human operator. 

The remaining applications are primarily vision-related. One approach, Target Recognition by Oys- 
ter [Appendix G, p. 87], addresses the problem of how to recognize a target hidden in a noisy infrared 
image by use of parameter netn>orks. Such networks provide a convenient approach to specifically con- 
nect a multiplicity of features distributed in a multi-level classification hierarchy. Explicit programming 
techniques similar to those used for rule-based systems establish the network connectivity. A network re- 
laxation cycle achieves winner-take-all voting, which minimizes the impact of noisy or missing portions 
of the image and provides robust classification decisions. Although in an early development stage, this 
approach seems to offer near-term applications potential. 

All applications discussed so far fall under the category of supervised learning systems. Unsupervised 
learning is much harder to achieve. One approach is Fukushima's neocognitron model, which Menon 
applied in the context of a tactical Image Classifier [Appendix H, p. 93; VIS-6, p. 141 ]. Although strictly 
a feedforward system, the neocognitron model represents a technique to self-organize several layers of a 
hierarchically-structured classification system such that limited shift- and rotation-tolerance is achieved. 

Successful vision systems may require an integrated approach from light reception to image interpre- 
tation. An example of a biologically-inspired design for an adaptive vision front end is represented by 
the Model Retina developed by Brill et al. [Appendix I, p. 101; VIS-1, p. 136]. Cooperative receptors 
are coupled in such a way as to provide an automatic iris - a light-flux-dependent integration of pixels in 
space and time. 

Scan-to-scan correlation is a problem important in many areas besides vision. Kuczewski developed 
a Target Tracking approach [Appendix J, p. 107; RAD-4, p. 160] based on an extension of Grossberg's 
boundary contour system into the temporal domain. Objects whose dynamical constraints are expressed as 
probabilistic "receptive fields" occupy locations in a space spanned by a cellular automata-type network. 
The network relaxes toward most likely track assignments in time scales relatively independent of the 
number tracks present and can naturally accommodate new updated information. 

Context-sensitive segmentation of imagery is a problem central to vision. A biologically-inspired model 
system of considerable complexity for Image Fusion has been developed by Grossberg [Appendix K, 
p. 115; VIS-4, p. 139]. Emergent - i.e., unsupervised - segmentation and filling in of features are carried 
out by the nonlinear interaction of two parallel modules, the boundary contour system and the feature con- 
tour system. In a series of simulations, this coupled system has been shown to automatically accomplish a 
variety of tasks, such as segmentation, completion, or noise suppression. Efforts are underway at several 
laboratories to apply this system to the fusion of multi-dimensional real-world data. Numerous parameters 
must be carefully adjusted to achieve and maintain stability of the system, which is balanced by several 
feedback loops at different scales. The intricacies of such a system are a powerful reminder of the way 
that nature has found it necessary to weave a multitude of simple feedback cycles into delicate and yet 
robust structures which form the basis of autonomous systems adaptable to changing environments. 

16 



2.7    HISTORICAL PERSPECTIVES 

Considering the long history of the neural network field, dating back a full half-century, the paucity of 
fielded neural network applications is, perhaps, surprising. To put this question in the proper context, the 
historical development of the featured applications is traced in Figure 2-2. It can be seen, on a time scale 
stretching from 1965 to 1990, that most neural network models have their conceptual origins a decade or 
two before the start of the particular application. With the exception of the Broom Balancer and the Word 
Recognizer, all applications shown do not start until 1985, while half again as many applications were not 
begun until 1986. 

(Filling In) l_ 

BCS 
FCS f _Q Q 

(Temporal BCS) l£D 

 Q  A 
»(Cognitron)J (Neocognitron) QTI 

(3-State Membrane) 

t (Parameter Net) pf ] 

(CMAC) _QJi 
(RCE) t        IMNN]       t   [NLS]   r^ 

(Multi-Layer Perceptron)  t [Backprop] O    A 
(Adaline) t ITD1 _Q- 

f (Adaline) [Delta] XL 

1970 
 1  

1980 

TIME (year) 

IMAGE FUSION 

TARGET TRACKING 

MODEL RETINA 

IMAGE CLASSIFIER 

TARGET RECOGNITION 

FORK LIFT ROBOT 

RISK ANALYSIS 

SONAR  CLASSIFIER 

PROCESS  MONITOR 

WORD  RECOGNIZER 

—I 
1990 

1988 

l^ 

j_      CONCEPTUAL        (Model) 
START [Learning] 

CL   START OF APPLICATION    _A      DEMONSTRATION 

_D      SIMULATION _y      SYSTEM  FIELDED 

Figure 2-2.    De velopment of Neural Net work Applications. 

From this point of view, it is not surprising at all to find the number of "finished" - that is, fielded - 
applications so small. The time seems ripe for DARPA to broaden the scope of neural network applications 
and help drive this field to greater maturity. Near-term application potential for the featured applications 
will be discussed in Section 2.9. 

2.8    STATUS OF THE FEATURED APPLICATIONS 

Taking a global view of the information collected in Table 2-6, it is clear that, in increasing numerical 
order, the neural network models change from simple to complex. The functions performed by neural net- 
works range from linear and nonlinear mappings, to optimization, and finally to specialized functions, such 
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as a model retina, track interpolation, and automatic segmentation of general imagery. Meanwhile, the 
connectivity of the models shifts from full connections, to sparse connections, to local interconnections. In 
other words, the numerical order reflects, in a sense, a general trend toward increasing problem complexity 
and specificity. Another important trend is the correlated shift from supervised to unsupervised learning 
modules or systems, followed by task-independent or autonomous modules. Almost concurrently, the 
information flow column reflects a change from feedforward to feedback or resonant systems. 

This line of reasoning can lead to a practical taxonomy for neural networks. The neural network mod- 
els are divided into two classes of information flow: feedforward versus feedback. Each of these is, in 
turn, subdivided according to three types of learning: fixed, supervised, and unsupervised. A graphical 
representation of neural network models considered in this Study, along with the featured applications, 
is shown in Figure 2-3. Clearly, most of the applications - and the fielded or nearly fielded systems in 
particular - are clustered in the feedforward-supervised column. 

Of practical import for the present status of neural network applications is the observation that ma- 
ture applications tend to be supervised feedforward systems with restricted connectivity. The near-term 
potential of individual applications is discussed in the next section. 

Another point can be drawn from Table 2-4 (p. 12), which displays alternate neural network approaches 
for the featured applications. For the majority of applications, a solution can typically be attempted by 
more than four alternative neural network models. What neural network model is most suitable for a given 
application? With the exception of a comparative analysis for classifier networks in the speech domain 
by Lippmann (IEEE Neural Network Conference, November 8-12, 1987), the Panel remains unaware of 
other applications-specific neural network model comparisons; such studies seem highly desirable for a 
mature advancement of the field. 

2.9    NEAR-TERM APPLICATION POTENTIAL 

In general, one would suspect that the gestation period for neural network ideas would be the longest, 
while the actual time spent developing an application to maturity is considerably shorter. A case in point 
is the Word Recognizer [p. 55], developed by Intel as a sellable product in less than three years (see 
Figure 2-2). 

Another noteworthy case is the Risk Analysis [p. 65] application, which, once its generic NLS (Nestor 
Learning System) had been developed, was completed by Nestor in less than a year. The development 
of this system, composed of multiple, complementary networks controlled by a central controller, traces 
its beginnings to the idea of the reduced Coulomb energy (RCE) network in 1977. Here again, once 
the foundations were laid, successful applications appeared rapidly. Indeed, the NLS system has been 
fielded in the context of at least five other applications: a Japanese [VIS-12, p. 146] and other character 
recognition systems [VIS-13, p. 146; VIS-15, p. 147], a speech recognition system [SPE-3, p. 154], and 
an industrial parts inspection system for camshaft sorting and automatic transmission stator identification 
[VIS-ll,p. 145]. 

The Nestor case is, perhaps, typical for all supervised mapping problems: once an adequate learning 
algorithm has been found, such mapping networks provide a rapid solution to a given problem. This is 

18 



< 
• GO. 
Q 

Q 
LU 

co 
> 
cr 

•£• 
3 
co 
z 
3 

CO 

> 
•cc- 

UJ 
0. 
3 
CO 

< cr 
< 

O 
(- 

Z < 
> DC 
CO t- 

UjS 
-"   < 

z w c 
w m n t- oc 2 zo! 
o < 2 

QO LLI 
LU  Z z 

5? m 
3 ^ cr ii LLI 

1- 
CO < > 

z z a a 
ggss 
5 t J J 
<  <   U   UJ 

01 o 
52 

Q 
111 

"X- 

co 

LU 

Q 
O 
5 

Q 
cr 
< 

cc 
o' 

> 
OC 

-LU" 
a. 
3 
to 
Z 
3 

co 
> 

-oc- 
LU 

a. 
3 
CO 

33 
LU  3 
o < 

Z 
o 
cr 

>5 
OO 

5 z " <  <  LU 
SC  IL 

\a 2 
St H OC (- 
0 LU rf LU 
1 Z CL Z 

«J    
'z c o o •*  •— 

.r  N u si 

z 
o 

UJ a 
o o 
oc <_> 
< UJ 

co 
o 
LL . 
V UJ 

to g 
CO i- 

a 
z 

< 

z 
O 
co 
Z> 

D    D 

a. 
< 
5 

cr 
3 

LU 

> 

H Z 

Si 
s5 

D 

z 
o 

-<r 

o 
cr 

   DC 

5 

w CO 

<   CD 

D 

cr 
O 

O 
5 
co 
CO 
LU u 
O 
cr 
a_ 

a 
cr 
O 

Q 
LU 

"X" 

m 
<o 
c-g 
oo 
00 

I 
O 
LU 
LU 
a. 

-co 

oc 
O 
co 
co 
LU 

u 
O 
oc 
0. 
LU 
cr 
a. 

oc z 
LU O 

< I- 
-i a. 
— LU 

2 Q. 

CO 
co 

3 
u 

cr 
< 
z 
O 
co 

(J   CO 
0C co 

LU   S   >   < 
0005 
3 -1 0: ** 
Q 3 LU * 
LU  O  2   CO 
OC U LU   cc 

5 
3 

o 
CD 
o 
oc 

o 

2   LU 
o o 

03 LU   -> 

<] 
z 

<    £ 
Z       co 
C       5 

I 
O 
o 
O OC * 

LU 
Q Q t- < 

< < 2 S 
LU LU oo   £ 
5 2 CO   oc 

19 



the basis for the great popularity of the multi-layer perceptron, which combines generality with apparent 
ease of use, thanks to the backpropagation learning algorithm. 

The work of Sejnowski (e.g., Sonar Classifier, Appendix D, SON-1, p. 59; or "Shape from Shading," 
VIS-16, p. 148) is a premier example of the potential flexibility and power of the "backprop" approach. 

The development times for fully functional systems of practical interest, however, may be not so short. 
In the hierarchically structured NLS system, the model can adapt fully to the structure of the problem, 
and rapid learning is automatically assured. For a backpropagation network, on the other hand, the rep- 
resentation of the problem, the training set, and its size and sequence must be carefully chosen to ensure 
convergence. 

The Cerebellar Model Articulation Controller (CMAC) approach to mapping, developed by Albus 
[ROB-1, p. 164] in the late 1960s, is another approach to the implementation of general, nonlinear map- 
ping functions. As applied in the Fork Lift Robot [p. 81], CMAC offers instantaneous learning, realtime 
response, and sufficient generalization to adapt a multi-dimensional, uncalibrated sensor array to a flexible 
object acquisition task. As a hardware-based demonstration of a specific robot task, the Fork Lift Robot 
is completed; but the goal of a multi-purpose, flexible (multi-jointed) robot controller will likely require 
research efforts well beyond the immediate near-term. 

Another application with near-term applications potential is the automatic Target Recognition [p. 87] 
system proposed by Hughes. In this case, a parameter network is utilized; it offers many of the features 
of traditional rule-based systems and therefore should allow for rapid development time. In contrast to 
the standard expert system approach, the parameter network approach also includes a relaxation phase to 
allow for combinatorial optimization of the decision. The need to find a globally stable parameter network 
may lead to highly application-specific development times, however. 

It is worth noting that, in comparing information flow and neural network field status, as shown in 
Table 2-6 (p. 14), a clear correlation is evident: all applications which have been fielded possess a feed- 
forward information flow. This is no accident; feedback systems of complexity sufficient for practical 
applications are much more difficult to develop. 

From a programmatic standpoint, it seems safe to assert that feedforward mapping or classification 
systems offer the shortest development time for a given problem complexity. Such problems have been 
and should be vigorously pursued, primarily by those with specific industry-oriented applications in mind. 

The remaining applications noted on the chart will require longer development times for full system 
applications, since they all belong to the class of advanced research. This work must be pursued if the 
longer-term potential of neural networks is to be exploited fully. 

2.10    UNIQUE ADVANTAGES OF NEURAL NETWORKS 

An important component in the assessment of neural network approaches for system applications is the 
existence of competitive advantages with respect to alternative technologies (see Section 3.3, p. 31). For 
a young and immature field such as neural networks, it is typically difficult to win head-on against the 
conventional, established competition. A thorough comparison study of several specific application areas 
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is included Part HI: Assessment of Neural Network Technology of this Report; here will be delineated 
the perceived advantages of neural networks as they were reported by neural network researchers to the 
System Applications Panel. 

A list of neural network advantages, as cited by the Panel's interviewees and ranked according to the 
total number of quotations, is found in Table 2-7. Speed, parallelism, ease of implementation, and super- 
vised learning rank solidly at the top of the list. 

Speed and parallelism by themselves, however, are not advantages exclusive to neural network appli- 
cations. In Table 2-8, the same list of advantages found in Table 2-7 are presented as they might apply 
to the 11 featured applications. Each stands for a distinct neural network advantage (•), but entails other 
perceived advantages (o) as well. In addition, this matrix is contrasted against the advantages offered 
by "conventional approaches." Clearly, most entries are shared and need to be checked in the final col- 
umn. Three items, however, emerge as advantages unique to neural networks: ease of implementation, 
self-organization, and unsupervised learning. 

The first, ease of implementation, is a matter of judgement, but has been consistently stressed by the 
very people who ought to know - the workers in the field who have, presumably, struggled with conven- 
tional approaches as well. The latter two entries, self-organization and unsupervised learning, should be 
considered to genuinely belong to the field of neural networks. Indeed, if another so-called non-neural 
network approach existed with these attributes, it should probably be seriously examined for inclusion in 
the neural network field. 

Ease of implementation appears to be a feature consistently cited in favor of all supervised learning 
approaches. Conversely, all these approaches have conventional competition, such as statistical or rule- 
based pattern classification techniques. The important aspect of neural networks here is the possibility 
of "programming by example." Of course, as has been discussed before, the notion of easy application 
development has to be generally qualified, particularly with respect to fully-connected networks (see Sec- 
tion 3.5, p. 33). 

Unless the problem has a near-trivial scale, a serious implementation of neural networks will require 
care, judgement, and intuition - as with any other important problem (see also Section 3.6, p. 34). How- 
ever, the fact that neural network classifiers, for example, can be taught without recourse to specific as- 
sumptions on the nature of the problem, such as a common probability distribution, is a clear-cut advantage 
of neural network approaches for such applications as mapping transformers and pattern classifiers. 

Self-organization harbors a connotation usually reserved for living systems. But the simple cellular 
automata pioneered by von Neumann teach that "dead" hardware somehow can exhibit lifelike properties 
by finding a way to maintain structure despite constant change [see Toffoli, SUR-12, p. 205]. This notion 
is always intriguing. To put things in perspective, it is perhaps useful to distinguish between small- and 
large-scale self-organization. 

Small-scale self-organization is exhibited, for example, by the two common supervised learning ap- 
proaches - backpropagation and the Nestor Learning System - in the sense that they can, to a limited 
extent, organize their neural nodes internally as receptive fields [see in particular Figure D-2, p. 63, of the 
Sonar Classifier}. 
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A more impressive example of small-scale self-organization is provided by the Image Classifier [p. 93], 
an application based on the neocognitron. Here, a multitude of neuronal layers are set up to permit un- 
supervised learning using self-organizing receptive feature fields. The Image Fusion example [p. 115] 
illustrates the property of emergent segmentation, which offers automatic larger-scale groupings of com- 
plicated imagery. 

How biological systems encode sensory information with self-organizing, spatio-temporal patterns was 
addressed by several speakers. Gross [BIO-4, p. 177] has initiated multi-channel recording of the electrical 
and chemical response of neuronal networks consisting of 100-400 cells. Similarly, Eggers (BIO-3, p. 176] 
plans to study the collective properties of artificially selected nerve cell preparations grown directly on a 
microelectronic, multi-channel recording substrate. Properties of a network of coupled neurons modeled 
as interacting voltage-controlled oscillators have been analyzed by Hoppensteadt [THE-2, p. 186). Shaw 
[BIO-8, p. 181] sees groups of 30-100 tightly-coupled neurons as the basic building blocks for biological 
information processors and has modeled conditions for obtaining dynamically stable firing patterns among 
such interacting groups. A novel theory for unsupervised learning with a general neural network has been 
developed by Jourjine [THE-3, p. 187], His work includes an explicit prescription of how characteristic 
feature fields spontaneously emerge from the fluctuations in randomness present in sensory signals. 

Global self-organization is a much harder problem. Preliminary simulations in the general area of 
computational maps were presented to the Panel by Pearson [BIO-6, p. 179] and Kuperstein [ROB-7, 
p. 170]. An ambitious simulation of a self-learning robot arm - DARWIN III, which is based solely on 
environmental feedback using visual and touch sensor integration - was demonstrated by Edelman and 
Reeke [BIO-7, p. 180; see also Part II. Chapter 10). Without doubt, the most exciting future applications 
of neural networks will center on systems with some degree of global self-organization. 

A closely related area, perhaps somewhat easier to achieve than global self-organization - at least in a 
limited context - relates to the need for studying complex system control structures. Hierarchical control 
is the center of attention of some neural network research and much artificial intelligence work. Here, 
complex system control structures are more far-reaching and less restricted than hierarchical control. 

Again, as so often before, living systems provide ample evidence of fine-grained and yet global control 
structures. As an example - and as an inspiration - the Panel offers, in Figure 2-4, a modern schematic 
view of the functional organization of the brain. The closely coupled, distributed nature of the system is 
apparent. 

In a sense, the circle is completed: the matter ends where it began - noting the human brain as the 
special attractor for the field of neural networks. But perhaps some insight has accrued to the effort: 
above all, it is clear that real-world problems are rarely easy if they are worth pursuing. It is also clear that 
anthropomorphic associations need not be taken too literally; nobody wants to build an artificial human 
brain - nobody needs to build an artificial brain. On the other hand, in full awareness of the enormous 
literature on control theory, it should be appreciated that the structure outlined in Figure 2-4 still is largely 
an enigma. How much of this enigma needs to be understood in order to satisfy the immediate needs for 
smart weapons and autonomous sensor systems remains an open question. 

24 



MOIdinO  UOIOIAI 

IN 
» 
s 

I 

.§ 

J 
FN. 

AAOIdNI AUOSN3S 

25 



2.11    NEURAL NETWORK ATTRIBUTES 

The System Applications Panel concludes this section with a characterization and classification of neu- 
ral networks which is bold, uplifting, and highly unorthodox. This view is based on the work of Rosen, 
who is directly connected to the earliest beginnings of neural network research and has followed the field 
ever since. (Rashevsky launched the field of neural networks in the mid-1930s - McCulloch, Pitts, and 
Rosen were all Rashevsky's doctoral students.) To quote Rosen (from Theoretical Biology and Complex- 
ity, R. Rosen, ed., Academic Press, 1985, p. 165]: 

• "Our current systems theory, including all that presently constitutes physics or phys- 
ical science, deals exclusively with a very special class of systems that I shall call 
'simple systems' or 'mechanisms.' 

• "Organisms, and many other kinds of material systems, are not mechanisms in this 
sense. Rather, they belong to a different (and much larger) class of systems, which 
we shall call 'complex.' 

• "Thus, the relation between contemporary physics and biology is not, as everyone 
routinely supposes, that of general to particular. 

• "To describe complex systems in general, and organisms a fortiori, an entirely novel 
kind of mathematical language is necessary. 

• "A simple system can only approximate to a complex one, locally and temporarily, 
just as, e.g., a tangent plane can only approximate to a nonplanar surface locally and 
temporarily. Thus in a certain sense, a complex system can be regarded as a kind of 
global limit of its approximating simple subsystems. 

• "Complex systems, unlike simple ones, admit a category of final causation, or an- 
ticipation, in a perfectly rigorous and nonmystical way. 

"We thus argue, in effect, that any attempt to deal effectively with the material basis of biological organi- 
zation forces a revamping of our entire traditional scientific epistemology." 

What is the relevance of this for neural networks? As Rosen elaborated in his presentation to the Study 
[THE-5, p. 189], neural networks can represent "simple" systems, such as mapping transformers, feature 
extractors, pattern generators, and dynamical systems. 

But in addition, neural network systems also represent "complex" systems in the sense defined above. 
Neural networks, therefore, are the proper physical realization of physical phenomena which are normally 
attributed to living systems. Complex systems, in particular, do not allow a complete syntactic description. 
They can be realized only as complete, autonomous entities for which an inherent distinction between 
hardware and software is not possible. 

A further consequence of these arguments is that only for "simple" systems are symbolic algorithms 
sufficient. In this regard, it is not surprising to find that artificial intelligence efforts have persistently 
failed to emulate true understanding or reasoning. 
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It is uplifting to think that neural network research may hold the key to a new science of "complex" 
systems which relates to "simple" systems in a way which is, perhaps, analogous to the way quantum 
mechanics relates to classical mechanics. 

2.12   LONG-TERM GOALS 

The long-range promise of neural network research with a view toward practical objectives can be 
summarized as follows: Based on an inspiration from biology (which implies, perhaps, a belief in the 
reality of "complex" systems) the field of neural networks shall. . . 

• Develop techniques for dealing with a large sensory data flow, 

• Learn representational schemata, 

• Understand how biological computational tasks are solved, 

• Find control structures for complex systems across a wide range of scales, 

• Build autonomous systems capable of surviving in a changing environment. 
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3.  ISSUES IN NEURAL NETWORK RESEARCH 

The concept of an electronic "neural network" has existed for more than 20 years. Research on such 
networks appeared to peak in the 1960s, and then waned, possibly because of a lack of practical methods 
for implementing such networks; a lack of satisfactory applications and a diversion of researchers into the 
broader area of artificial intelligence may also have contributed. 

More recently, the possibility that neural networks may solve many difficult problems in such areas as 
machine vision, robot control, speech recognition, etc., has served to revive interest in the field. This spurt 
of interest seems to be inspired by a variety of developments: 

• Advances in integrated circuit technology, which may make fabrication of such de- 
vices more practical; 

• New algorithms for designing complex multi-layer networks, which may extend 
their applicability; and 

• Discoveries in biology laboratories, which offer new insights into possible network 
architectures. 

(A more detailed construction of the history and evolution of neural network research may be found in 
Part II, Chapter 3 of this Report.) 

In spite of such progress, there still appear to be very few practical applications for neural networks. 
Much of the research appears to be motivated by two assumptions: 

• If practical implementations can be found for neural networks, then researchers will 
be motivated to find practical applications. 

• If practical applications can be found for neural networks, then researchers will be 
motivated to find practical realizations. 

This "chicken or egg dilemma" appears to occur throughout much of the current activity in neural net- 
works. 

3.1    WHAT IS A NEURAL NETWORK? 

To some extent, electronic neural networks are attempts to model biological neural networks. (The 
formal definition of 'neural network' used by the Neural Network Study and its panels is articulated in Part 
I, Appendix B: Neural Network Glossary of Terms and in even greater detail in Part II, Chapters 1 and 2 of 
this Report.) It is known that the biological neural networks that comprise the human brain and nervous 
system are capable of remarkable kinds of pattern recognition, decision making, and logical inference 
tasks. While attempts to duplicate capabilities of the human brain using computers (often described by the 
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term 'artificial intelligence') have generally been failures, could it not be possible that electronic circuits 
whose architecture more closely resembles that of the human brain may do better at these tasks? 

At the same time, it may not be necessary to fully model the detailed organization of the brain. (While 
studying birds may have helped understand the principles of flight, it has not been necessary to coat 
airplanes with feathers.) This area is one of some controversy, with researchers differing considerably in 
the amount of effort they would like to see invested in "reverse engineering the human brain." 

Most of the circuits currently considered to be neural networks do have certain similarities. Like biolog- 
ical systems, they are expected to consist of a large number of small processing elements - i.e., "neurons." 
These neurons are highly interconnected, with the interconnections usually having some variable quality, 
which permits modifying the performance of the network by adjusting the variable quality. To some de- 
gree, this variable quality is expected to simulate the behavior of the synapses which connect biological 
neurons. The variable nature of the network is expected to provide a variety of benefits, such as adap- 
tation to changes in the problem specifications, compensation for faults in the network, and improved 
performance with time. 

The properties attributed to a single neuron may vary, but, generally, the single neuron is considered 
to be capable of certain elementary processing of its inputs to generate its outputs. The processing is 
usually conceived as being much less complex than that provided by one of today's microprocessors, but 
is performed in parallel and at high speed. 

At the state of today's art, electronic neural networks usually exist only in the form of computer simu- 
lations. Because neural networks are typically conceived as being very large, the ability to simulate them 
is generally limited by the speed and storage capacity of available digital computers. Some researchers 
have developed special hardware to speed up the simulations of certain structures. 

3.2    FORMS OF NEURAL NETWORK RESEARCH 

There are a variety of topic areas which fall within the purview of neural network research. As a result, 
the field is one in which several disciplines - biology, psychology, physics, mathematics, engineering - 
come together. Some of these topic areas include: 

• The study of biological networks of neurons. These studies include both compo- 
nent level (e.g., how an individual neural cell operates) and system level (e.g., how 
networks of neurons are organized to perform a given task) research. This work 
may include the development of models for the behavior of biological neurons. 

• The simulation of neural networks. Using either models derived from biological 
studies or hypothetical structures which may or may not possess properties believed 
to be characteristic of biological systems. These simulations may be used to de- 
termine stability of behavior, adaptation properties, learning or memory capacity, 
characteristics in the presence of faults, etc. 
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• The application of hypothetical structures to known problems. These studies 
usually consist of using real or artificially created data together with a neural net- 
work simulation in an attempt to determine how well a proposed neural network 
architecture would perform. The neural network performance may be compared 
with other approaches to the problem solution. 

• The study of ways to implement proposed neural networks. These studies may 
lead to new components and/or processes for making them. Also included may be 
studies of reliability, limitations on performance, expected cost, etc. 

3.3   MAGIC OR MATHEMATICS? 

Reading some of the literature or listening to some of the researchers in the field of neural networks 
could lead the naive observer to believe that neural networks are truly magic. The range of problems which 
neural networks are expected to solve seems awe-inspiring. In some cases, the logic used appears to be 
based on the notion that "since we haven't found any other solution, neural networks will have to solve 
the problem." Unfortunately, actual performance capabilities obtained from neural network simulations 
are far from awesome. To some extent, the lack of performance could be attributed to the current inability 
to simulate very large networks of neurons. After all, the argument goes, "don't we have our own brains 
as an existence proof?" 

What is not clear from the current state of neural network research is whether the kinds of circuits now 
being studied have capability anything like those of the human (or even a frog's) brain. It is not presently 
known which parts of the brain, if any, are "hard-wired" and which are fully self-organized. There does 
not exist an accurate model of the behavior of biological neurons in isolation or in a network. 

There do exist, however, a variety of models which can be described in mathematical terms, and which 
can then be simulated on a computer. In one sense, then, there do exist neural network algorithms. Algo- 
rithms can be studied and, within the capabilities of present mathematics, can be understood. Therefore, 
neural networks might be viewed as a subset of all possible algorithms. Their applicability to any problem 
may then be compared with competing approaches based on accuracy and cost. 

Thus, the chicken-or-egg dilemma once again becomes important. If neural networks are just a subset 
of possible algorithms for a solution, is it not unreasonable to believe, a priori, that they correspond to 
the most accurate solution? If they are not the most accurate solution, the basis for choosing them as the 
preferred solution to a given problem would depend on a cost/performance trade-off. But before neural 
networks can be the most cost-effective solution, a realization for them which is uniquely lower in cost 
must be found - i.e., the realization must lower the cost of the neural network approach more than it lowers 
the cost of other competing algorithms. 

When figuring the cost of solution, more than just the cost of fabrication of the components must be 
included. For example, the cost of design engineering, field maintenance, etc., should also be included. It 
may be in these areas - concerning the "ease of implementation" - that the neural network approach will 
outperform other algorithmic approaches, at least to the extent that self-training, self-healing networks 
can be built. 
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To fully achieve such benefits may take new component developments. Experience has indicated that 
today's computers are not adequate to simulate envisioned neural networks. Improved simulation hard- 
ware may make realizations of large networks less expensive, but could negatively impact some of the 
fault-tolerance expected from neural networks. (For example, if a simulation is achieved by extensively 
multiplexing a computer processing element, failure of that element might render the entire network non- 
functional. The predicted graceful degradation of performance under failure would be lost.) However, im- 
proved simulation capabilities might still not be adequate to make neural networks the preferred solution 
to a problem, if such simulation hardware also made competing algorithms more economically realizable. 

One school of thought holds that neural networks must necessarily be realized with analog components 
rather than via digital simulations. The use of analog components would, presumably, eliminate the use 
of shared or multiplexed hardware that is so common in digital systems. Not only might that sharing 
of hardware be expected to degrade fault tolerance, but the reliability of the digital system may suffer 
because it requires more components than the equivalent analog system. (Even though a portion of the 
digital system is shared, several non-shared memory bits are needed to store each "analog" weight value.) 

A second perceived advantage of an analog realization is associated with the fact that so much of the 
operation of currently conceived electronic neural networks consists of adding a collection of weighted 
input values. Because analog summing circuits are much simpler than the digital equivalent, the analog 
approach may be the optimal choice. 

A counter-argument to analog realizations is that they require the development of new circuit compo- 
nents. A far greater effort is being made throughout the semiconductor industry toward developing new 
and improved digital components than is being made for analog components. Not only must a new compo- 
nent be developed, but it must undergo extensive scrutiny to establish its reliability and manufacturability. 
Digital circuits have already passed these hurdles, and digital logic families include components which 
provide very fast memory and arithmetic capability. Recently introduced digital signal processing compo- 
nents, which offer very high speed multiply-and-add operations, may likely improve simulation of neural 
networks. 

While the availability of neural network components at very low cost should inspire their usage, there 
are questions one may ask about how "elastic" the market for the product might be. Generally markets 
are not infinitely elastic. Lowering the cost of a component may expand its usage but seldom creates a 
market for it. For example, a market for integrated circuits was established when ICs cost ten dollars a 
gate - although the market became far larger at a few cents per gate. On the other hand, billion dollar 
markets have been predicted for speech recognition products, yet the actual market results have remained 
in the $10 to $20 million range in spite of price cuts. Apparently, the performance of these systems does 
not justify their usage at any price except in a few special cases. 

This view of market elasticity may lead to the question: why is there not more usage of neural network 
techniques via microprocessor-based simulations, application-specific integrated circuits, etc.? At what 
cost and performance will the market for such products develop? If these thresholds could be better 
predicted, it might be possible to better predict the time and cost needed to develop practical neural 
network systems. 

One scenario which may occur when using neural networks in algorithmic form is the discovery of a 
non-neural network solution once the behavior of the neural network is understood. The study of those 
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situations where a neural network does not perform well may give clues leading to a more accurate con- 
ventional solution. It is possible that neural networks may have utility in helping researchers learn to 
understand difficult problems even if they are not used to implement the ultimate solution. 

3.4   QUALIFYING PERFORMANCE 

One of the most difficult problems faced by current researchers is that of evaluating the performance of 
proposed neural network architectures. Many architectures appear to show "promise" at solving a given 
problem, yet may upon further examination be found to be inappropriate, or at least suboptimal. 

Whether being tested with simulated data or real data from the field, the quality of the test is critical in 
evaluating the performance of a neural network. The manner of encoding the data can critically affect the 
performance of the network. 

There are methods for allowing complex functions to be realized by neurons. Inputs may be derived 
from polynomial terms and/or cross products, and multi-layer structures may be used. All have the disad- 
vantage of rapid growth of complexity as the number of input variables is increased. 

Once large neural networks are attempted, the performance and limitations are far less obvious, and 
even experienced researchers can get carried away by their "encouraging first experiments." 

3.5    RATING THE QUALITY OF RESEARCH 

The existence of early and encouraging results from many neural network experiments makes judging 
the work very difficult. It is often quite easy to define a "toy" problem that will show excellent performance 
in simulations. Real data often have many subtle quirks that make performance much harder to evaluate. 

In many cases, the researcher is forced to scale his experiments to much smaller systems than would be 
needed to process real data, because of limited simulation capacity. It is not always obvious how costly 
in time, etc., the expansion of a network may be. Researchers, in their zeal, may overlook the impact of 
dealing with large numbers. Consider an example: 

A fairly common problem proposed for neural network studies is the development of a pattern recog- 
nition system which will be invariant to position of a pattern on the retina. Rather than wire the system 
so such invariance is designed in, the researcher proposes to train the system to generalize - i.e., to learn 
that its response is supposed to be invariant to position. Assume further that the researcher plans to use 
a fully-connected network, in that all neurons connected to the retina have inputs from all possible retina 
spots. If the retina is a rectangular array ofraxn spots, there will be m n inputs to each neuron connected 
to the retina. 

If the retina is so connected, there is no bias to show the neuron which spots are adjacent to which other 
spots. One could scramble the connections from retina to neural network without affecting the trainability 
of the network. Using this model, the lateral displacement of a pattern on the retina corresponds to a 
particular permutation of the inputs. 
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If the retina is imagined to be toroidally connected in each of the x and y dimensions, there are exactly 
ran permutations of the input spots which correspond to lateral displacement of the pattern. Unfortu- 
nately, there are (ran)! total permutations, of which all but the aforementioned ran do not correspond to 
a lateral displacement. How many patterns will be necessary to teach this system that of (mn)\ permu- 
tations ran- and only ran- are acceptable? Since this arrangement has no bias toward any particular 
permutation, it is reasonable to expect that not only ran acceptable permutations must be shown to the 
system, but also a representative sample of all permutations considered unacceptable, such as, for example, 
those that would transform a "T" into an "L." 

Even if the network is capable of realizing the desired function, (ran)! is such a large number, that it 
could easily take longer than the life of the universe to do the training. (Note, for a modest 100 x 100 
retina, the number would be 10,000!. Written, such a number is roughly equivalent to 3 followed by 
35,659 more digits.) While the patience of the researcher who sets the solution of this problem as his/her 
goal might be admirable, it is questionable whether it is in the best interests of the nation to have the next 
missile design dependent on his/her success. 

In spite of the large numbers cited above, the design of a neural network which will have the desired 
invariance is not necessarily impractical. Consider Fukushima's neocognitron, a multi-layer network in 
which each layer contains subcollections of neurons. Each subcollection is a set of neurons such that each 
neuron covers a small region of the retina - yet the subcollection covers the entire retina. Training is done 
such that all members of a subcollection will have identical weights. In this manner, each subcollection 
becomes a "feature detector," but has an output which is invariant to the position of the feature on the 
retina. While it may be too early to determine whether this approach will solve the problem, it should be 
obvious that it has a much better chance for trainability to invariance than the fully-connected array. 

Although different approaches may have greatly differing chances for success, as yet there does not 
appear to be any method, other than the experience of the researcher or his reviewers, for determining 
in advance whether there are "hidden" problems inherent in the approach. This lack of method makes 
judging proposals very difficult. 

3.6    REAL VERSUS "TOY" PROBLEMS 

Evaluating the performance of a neural network approach may not only be costly in terms of simulation 
time, but also requires source data which adequately represents the type of problem the network is expected 
to solve. In selecting data for use in simulations, the researcher must be careful not to bias the results. In 
general, the best data will come from real-world situations. 

Too often, sufficient real-world data are not available to the researcher to allow testing the neural net- 
work in a lifelike situation. The creation of artificial data may allow simulation of the network, but can 
seriously bias the results, if the artificial data lack the important variants contained in real data. 

The amount of data needed to adequately exercise a neural network may also be difficult to predict. 
To some extent the number of weights in a network should give some clue to its "learning" capacity. 
The researcher should be wary of giving too much weight to results obtained from experiments in which 
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the number of training or testing samples is orders of magnitude less than the numbers of weights in the 
system. 

One approach to improving the ability to judge the quality and effectiveness of neural network research 
may be the development of standardized problem databases. This technique has proved useful in the 
area of speech recognition. While neural network research should not be limited by such databases, their 
availability could allow comparison of various network designs on the basis of error performance, training 
requirements, etc. 

3.7    SOME PROMISING AREAS 

In spite of the rather negative viewpoint expressed above, there are some areas where neural networks, 
or simulations thereof, would appear to have real advantages. 

In the control of robotic modules, it is very difficult to predict in advance all of the non-ideal behavior of 
the elements. The effects of friction in joints, warpage and bending of segments under load, inert ial mass 
distribution, etc., might be measured and computed, but at considerable cost. Once the basic distortions 
and their impact on performance are understood, it would appear possible to design a self- optimizing 
system which can compensate for the imperfections. Even if the self-optimizing system worked less 
perfectly than the fully analyzed one, the cost should be so much less that it would still be the preferable 
choice. 

Improved understanding of the capabilities of different neural network structures is providing much 
better insight into neural network behavior. In some cases, certain neural network structures can be shown 
to be equivalent to known classical pattern classifiers. Here, the availability of truly economical neural 
network hardware would provide a lower cost method for implementing the classical procedure. 

Already mentioned above are efforts toward developing visual-data processing systems, such as position- 
invariant pattern recognizers. While these efforts are still in an early stage of exploration, there would 
appear to be much promise in this area. While the payoff from a successful solution could be very large, 
there are still many unsolved problems in this field. Further studies of biological neural networks, emerg- 
ing from the biological laboratories, may give clues as to how systems for visual data processing should 
be organized, and may help us design better pattern classifiers. In some cases, the structures appear to be 
more hard-wired than adaptive, but still may lend themselves to neural network realizations. 

Visual data processing not only includes pattern recognition, but also a variety of related functions such 
as estimating the location and velocity of visually presented objects, choosing which objects to track, and 
using visual data to aim an imaging device. All of these problem areas may lend themselves to neural 
network solutions. 
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4.   CONCLUSIONS CONCERNING NEURAL NETWORK SYSTEM APPLICATIONS 

The opportunity provided System Applications Panel to review many neural network applications pro- 
vided a valuable perspective for drawing general conclusions and making specific recommendations for 
the pursuit of future efforts in neural networks. The results of the Panel's efforts allow one to identify 
near-term and future system applications that could benefit most from neural networks. In this regard, 
Carver Mead [SUR-9, p. 199], the inventor of retina and cochlea chips, made the following observation 
during a Panel meeting: 

"In a field like neural networks, one is usually too optimistic in the short run, but 
one is never optimistic enough over the long run." 

With this in mind, the following conclusions and recommendations are aimed at fostering realistic 
short-term applications while at the same time enabling the broadest possible opportunities for future 
applications. 

4.1    CONCLUSIONS 

Neural networks provide significant advantages in solving processing problems that 
require realtime encoding and interpretation of relationships among the variables 
of high-dimensional spaces. 

Vision, speech, and robotics are prototypical of such processing problems. Other processing problems 
that can have the same characteristic are the fusing of many simultaneous data streams, the correlation of 
targets from scan-to-scan in a scanning sensor system, and certain problems of optimization. 

All applications and models reviewed by the System Applications Panel addressed some form of the 
problem of learning and/or implementing mappings from input spaces, usually of a high dimension, into 
some interpretive output space. Often, the mappings transformed points from some TV dimensional Eu- 
clidean space RN, into some M dimensional Euclidean space, RM. 

The Sonar Classifier [Appendix D, p. 59; SON-l,p. 155], for instance, uses sonar returns to distinguish 
between rocks and metal cylinders submerged in sea water. The input space is all possible sonar returns 
from these objects, and the output space is one of two possible states corresponding to classifying the 
source of the return: a rock or a cylinder. The classifier partitions the power spectrum of each input signal 
into 60 bins, and feeds the numerical value of the power in the bins into 60 input neurons. Thus the sonar 
signal classifier is set up to learn and implement the map on R60 that correctly classifies sonar signal 
returns. 

Likewise, the shape-from-shading [VIS-16, p. 148] network encodes the boundary information in a 
visual scene that arises from the shading data (or, in general, the texture-gradient data) contained in the 
scene. The input space is the set of all possible visual images. The output for a given image is the 
identification of the boundaries around all the objects in the image. Thus the output space is the set of 
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boundary segmentations associated with the images in the input space. Representing the image as pixels, 
and the boundaries as sets of active neurons corresponding to the pixels that form object boundaries, the 
input space is RN, where N = number of pixels (multiplied by any color or grey levels associated with 
each pixel) and the output space is RM where M = number of neurons required to form all possible object 
boundaries. The network is designed to implement the mapping RN —> RM that maps images into their 
object segmentations. Because M and TV are large, possibly millions or more, the input space, the output 
space, and the quantity of computations required of the network are all very large. 

Speed, parallelism, ease of implementation, and ability to learn were most often cited by the researchers 
heard by the panel as reasons for using neural networks. It is noted that all of the reasons cited are 
related in some fundamental way to the suitability of neural networks to adequately learn and/or implement 
RN —• RM mappings. 

Neural network applications for commercial products are expected. 

While most applications are still in early stages, this situation is likely to change as the many workers 
that are currently in the field bring their applications to maturity. Optimism for applications and for the 
field of neural networks ran high among the researchers interviewed. 

The Panel's interviews demonstrated that the field of neural networks has progressed at different rates 
in different areas. In some small measure, the field has moved past research and has become commer- 
cial. Nestor's applications [Appendix E, p. 65; VIS-(11- -15), p. 145; SPE-3, p. 154] and Intel's Word 
Recognizer [Appendix C, p. 55; SPE-2, p. 153], are examples of work that has progressed to commercial 
use. 

The field is developmental, although for the most part, some workers are no longer asking research 
questions, but are instead developing products to be put to practical use. The GTE factory Process Monitor 
[Appendix B, p. 51; DYN-1, p. 172], is another example of such an application. 

It is recognized from this review that the field is still in the research phase, and workers are asking 
questions whose answers will determine what the future applications will be. The System Applications 
Panel saw a wide variation in the quality of results across the neural network arena. This is no surprise; it 
demonstrates the newness of the field, the arrival of new workers and new ideas, and the different levels 
of difficulty in the problems addressed. 

But it became clear as a result of the Panel's work that few rigorous efforts have been made to com- 
pare the performance of neural network methods against other methods or against other neural network 
approaches. This is largely due to the fact that the field is still in the early stages of experimentation 
and invention rather than the later, more mature stage of an engineering science. The provision of proce- 
dures and institutions that will promote the development of neural networks into an of engineering science 
with a complete conceptual framework would go far towards removing its deficiencies and fostering real 
progress in the growth of neural network applications. (Part III, Chapter 3 of this Report contains the 
Neural Network Study's Technology Assessment Panel's comparison of neural networks and other tech- 
nologies; comments on the present state of a neural network theory, or conceptual framework, can be 
found in Part II, Chapter 12 of this Report.) 
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Neural networks may offer significant benefits to future defense systems. 

Advanced vision/image processing and robotics capabilities are understood to be of critical importance 
to future defense systems. Because of the nature of the high-dimensional spaces involved, neural networks 
can play an important role in addressing the processing requirements for both vision and robotics. 

In robotics, neural networks enable the learning of functions that map the space of sensor data con- 
cerning the environment and the robotic internal system into the space of robotic manipulations. These 
mappings enable the implementation of dynamic robotic manipulations that have not yielded to conven- 
tional techniques and have prevented critical progress in the field. Results in robotics were among the 
most encouraging heard by the panel. 

In vision, neural networks offer both the implementation of complex mapping functions, such as the 
boundary segmentation of visual scenes, and the learning of classification functions, such as the recogni- 
tion of objects from their shape. More vision problems were addressed by the researchers heard by the 
Panel than any other problem area. 

Other areas - such as optimization, sensor scan-to-scan correlation, speech, and data fusion are also 
benefitted by neural networks, and potentially offer high payoff to defense systems. 

4.2    RECOMMENDATIONS 

In recognition that the importance of neural network technology lies in its promise for the future - not 
in its accomplishments to date - and in order to foster and to hasten the development of a strong and useful 
field, the following recommendations are offered by the System Applications Panel: 

Pursue the exploitation of existing neural network learning algorithms and develop 
new ones. 

Opportunities for this are widespread, and can provide a valuable impetus to the neural network field. 
Examples of such opportunities among the applications reviewed by the Panel are Nestor's Mortgage 
Loan Evaluator and Sejnowski's Sonar Classifier. Problems pursued should be those in which: 

• An RN —• RM map is required to solve the problem. 

• Examples of the map are readily obtained. 

• The map is not known explicitly and is expensive to derive by conventional means. 

• A means for learning the map with a neural network learning algorithm can be read- 
ily identified. 

Provide the infrastructure required to enable neural network technology to evolve 
from a realm ofad hoc experimentation to afield of engineering science. 
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Such infrastructure should include: 

• Databases for generic applications areas, e.g.: 

1. Image libraries, 

2. Speech and sound libraries, 

3. Robotic task sets. 

• Benchmark problems in the generic areas that enable comparison of key metrics 
such as network size, accuracy, computational load, and training time. 

• Methods for evaluating research and demonstrations, including: 

1. Standards for reporting results, 

2. Techniques for comparing approaches. 

Focus research and development activities to promote high-payoff, generic appli- 
cations in the areas of vision, speech, and robotics. 

Undertake immediate activities towards the development of key neural network subsystems in each 
generic area. Certain subsystems are critical to applications in their generic areas because a broad set of 
potential applications depends on prior development of these subsystems. Among these key subsystems 
are: 

• A realtime, robust visual scene segmentation system. 

• A robotic manipulator that learns its system dynamics through practice, and learns 
its required behavior by example and practice. 

• A connected speech recognizer. 

Other key subsystems may also need to be defined and pursued. 

4.3    CLOSING OBSERVATIONS 

From the perspective of the System Applications Panel, the applications reviewed varied in their in- 
trinsic value as well as in the risks associated with their further development. Figure 4-1 shows how the 
Panel rated the risks of further development as a function of intrinsic value for the 11 featured applications. 
These applications tend to cluster in the high-risk, high-value corner of the figure, with the vision-related 
applications occupying the extremum. None of the 11 applications occupy the most desirable corner of 
the figure - the high-value, low-risk corner. 

However, further progress on the high-valued applications would tend to move them toward the de- 
sirable corner, and in fact their current position of higher risk is due at least in part to the fact that these 
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Figure 4-1.    Panel Assessment of Risk and Value for the Featured Applications. 

41 



applications require more time and effort in their development than some of the others. Thus, for example, 
the vision applications - which were judged by the Panel to be the most valuable - are also the ones that 
take the longest to develop. 

It appears unlikely that most neural network applications will be "pure plays" employing a stand-alone 
neural network. Rather, it is expected that neural network applications will actually be integrated systems, 
with neural networks playing a major role. For example, general automatic recognition devices would 
almost certainly require a neural network to perform the function of scene segmentation. And, likewise, 
recognizing portions of the segmented scene might also require a neural network. But other crucial parts 
of such a device (focus-of-attention, tracking, and evaluation) could probably be handled by non-neural 
methods. 

Important applications requiring neural networks tend to be substantial engineering projects, involving 
many technologies other than neural network- based ones, and they bring with them technical problems 
that are not due to neural networks per se. For this reason, it is important to keep early neural network 
developmental activities focused on problems for which the major engineering challenges are primarily 
neural network-oriented. The key neural network subsystems suggested above are intended to be of this 
kind. Thus, not only are they important to a wide area of applications, but they also tend to promote rapid 
technical progress by concentrating effort primarily on neural network issues. 

It has been said that neural networks are an answer looking for a problem. The consensus of researchers 
heard by the System Applications Panel would appear to conclude otherwise. Indeed, it would appear that 
problems of significant national importance in the realms of vision, speech and robotics are problems 
looking for an answer, and this Panel has determined that neural networks can provide an important part 
of that answer. 
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APPENDIX    A 
TEACHING AN ADAPTIVE NETWORK WITH VISUAL INPUTS TO BALANCE AN 

INVERTED PENDULUM 

Viral V. Tolat, Dr. Bernard Widrow 
Stanford University 
Stanford, CA 94305 

This work was supported by the NASA Center for Aeronautics and Space Information Systems (CASIS) 
under grant NAGW 419 

A.l    INTRODUCTION 

Balancing a broom stick in the palm of one's hand is a fairly complex task from a control point of view. 
However, for those of us who have a modicum of coordination it is a seemingly simple task. If asked how 
we do it, most of us would be hard-pressed to come up with an accurate account. An analogous problem 
is that of balancing an inverted pendulum fixed to a non-stationary platform. If the task of balancing such 
a system were presented to a person in the form of a video game, that person would probably master 
the game in a short period of time. Of course, to master this game, we have available to us the most 
sophisticated adaptive network around, the human brain. 

Adaptive networks are of interest because they represent an attempt to simulate or duplicate some of 
the basic functions of biological brains. They have many interesting properties - for example, they are 
inherently parallel, fault tolerant, they can learn from examples, and they can generalize. By being parallel, 
functions that might take a conventional computer seconds or minutes to compute can be computed in real 
time by adaptive networks. Because of the distributed way in which information is stored in the network, 
in the interconnections, local damage to the network will cause only minor degradation in the operation of 
the entire network - as opposed to totally disabling some arbitrary function of the system. Unlike current 
expert systems, which have to be explicitly programmed and for which algorithms that implement the 
function must be developed, the training process for an adaptive network is relatively simple. By utilizing 
learning algorithms, a network can be taught to perform a function by being presented with example 
inputs and the correct associated responses. Adaptive networks have an innate ability to produce a correct 
response to input combinations for which the network has not been trained - i.e., they can "generalize" or 
"infer." This is a very useful trait, since, in many applications, it is unreasonable to assume that a system 
can be trained on all possible inputs. 

The research objectives are fourfold: 

1. To demonstrate that a person with the skill to stabilize an inverted pendulum can 
train an adaptive network to perform this control task. 
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2. To demonstrate that an adaptive network can stabilize an inverted pendulum by per- 
forming visual dynamic processing to extract the critical state information (pendu- 
lum angle, pendulum angular velocity, cart position, cart velocity) from coarsely- 
quantized images of the pendulum and cart without being "told" what that state 
information is. 

3. To demonstrate that an adaptive network can generalize - i.e., make correct deci- 
sions and produce correct responses to inputs it has not been specifically trained on 
- after training with a limited number of other sample inputs. 

4. To demonstrate that an expert can impart learned skills to an adaptive network in 
complex problem environments for which it may not be possible to develop explicit 
decision rules. 

The first three of the above objectives have been realized and the results are discussed below. The fourth 
objective is long term. It leads toward a new form of man-machine interaction in which a person trains 
a machine to perform a task by having the machine "look over the person's shoulder" and observe the 
environment and the person's responses to the environment. After limited training, the machine will be 
able to perform the task independently of the person. 

The next section describes the inverted pendulum problem and discusses why it was chosen as a basis 
for research. The section after presents the previous work done on the inverted pendulum problem. This 
is followed by a presentation of the most recent work and results. The last section summarizes the effort 
and discusses future research. 

A.2    INVERTED PENDULUM 

In the inverted pendulum system illustrated in Figure A-1, four variables describe the state of the system: 
the position of the cart (i), the velocity of the cart (t), the angle of the pendulum (9), and the angular 
velocity of the pendulum (w). The force required to stabilize the system is 

F = U x sgn[k\x + kjv + k^9 + /c4u;] , (A.l) 

where U is a constant representing the magnitude of the force to be applied to the system and the coeffi- 
cients k\, ki, ki, /c4, are derived from the physical characteristics of the pendulum system and optimal 
bang-bang control theory. A realization of Equation A.l is shown in Figure A-2. In an automatic system, 
sensors on the cart and pendulum feed the state variables into the circuit of Figure A-2, whose output 
mechanically drives the cart, thus closing the control loop. 

There are several reasons why the inverted pendulum was chosen as a basis for adaptive network re- 
search. First, the inverted pendulum problem is a classical control problem which has been extensively 
studied and is well understood. The inverted pendulum problem is representative of many other control 
problems and therefore an understanding of how to use adaptive networks to balance the pendulum will 
allow us to solve other control problems. By using a simple visual image of the cart and pendulum, we 

44 



s 

KH> 

x = CART POSITION 
v = CART VELOCITY 
e = PENDULUM ANGLE 
w = PENDULUM VELOCITY 
F = REACTION  FORCE 

Figure A-1.    In verted Pendulum. 

Figure A-2.   Realization of a Control System for the Inverted Pendulum based on Equa- 
tion A. I. 
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can examine pattern recognition and vision problems as well. Finally, the complexity of the inverted pen- 
dulum is significant enough to make the problem interesting while still being simple enough to make it 
computationally tractable. 

A.3    PREVIOUS WORK 

The use of an adaptive network to stabilize a mechanical inverted pendulum was first studied by Widrow 
and Smith [2,4,3]. They demonstrated that a network of one computing element, an Adaline (adaptive 
linear element), was capable of balancing an inverted pendulum if the Adaline input consisted of the four 
state variables, each encoded with an TV-bit linearly-independent code. The force produced by the Adaline 
approximated that called for by Equation A. 1. The network was trained using the LMS, or Widrow-Hoff, 
algorithm with the output of an optimal controller of the form in Equation A. 1 as the teacher. The first 
objective, to train an adaptive network to balance an inverted pendulum, was first realized by this work. 

Barto [1] has also studied the problem of balancing an inverted pendulum using an adaptive network. 
Barto used an input code and computing unit similar to that of Widrow and Smith, but for training he used 
a system based on reward/punishment learning. 

A.4   CURRENT WORK 

The current research began by replacing the mechanical cart and pendulum of Widrow and Smith with 
a Macintosh computer simulation and display. The adaptive circuits were replaced by software imple- 
mentation. This work has led to the realization of the second objective, to train an adaptive network to 
balance an inverted pendulum with the input consisting of a quantized visual image of the pendulum and 
cart. Examples of the quantized images are shown in Figure A-3. The image is a 5-by-ll binary pixel 
representation of the cart and pendulum; 65 different images are possible with five different cart positions 
and 13 different pendulum angles. Pictures larger than the 5-by-ll image were not used because they 
provided no additional information and added computational overhead. Smaller pictures did not provide 
the resolution needed. 

The input to the network actually consisted of two 5-by-l 1 images, one representing the present visual 
image and the other representing the visual image at a slightly earlier time. Both images were necessary 
because the network had to derive the cart and pendulum velocities as well as their positions.1 With these 
two images, there are 4,225 different possible input combinations (65 x 65) and a total of 110 input bits 
(5 x 11 x2). 

Simulations were performed on a network consisting of one Adaline unit. The learning curve is shown 
in Figure A-4 and a "generalization curve" is shown in Figure A-5. Because the input set is not linearly- 
separable, the Adaline was unable to completely learn all the correct responses. On average, about 3.5% 
of its responses were incorrect. In spite of this, the Adaline performed remarkably well. When tested, it 
was able to balance the inverted pendulum indefinitely, without crashing. 

1 The system could be designed to work with only one image by internally re-using the current image with the next image 
with the aid of delay circuits. The end result would be the same. 
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Figure A-3.    Two Examples of Macintosh-generated Pendulum and Cart Images. The pic- 
tures on the right are 5x 11 quantized images of the pendulum and cart figures on the left. 
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Figure A-4.    Learning Curve for a One-unit Network Using Two 5 x 11 Images as the 
Input. 
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Figure A-5.    Generalization Curve for a One-unit Network Using Two 5x11 Images as 
the Input. 

A.5    SUMMARY AND FUTURE 

Although control of the inverted pendulum was able to be achieved with a single Adaline unit with visual 
inputs, more complicated tasks will require larger adaptive networks with appropriate sensory inputs. 

Expert systems are a fertile ground for adaptive network research. The current method of having to 
extract knowledge from an expert and then explicitly program this into a computer can be replaced by 
having an adaptive network learn by simply observing an expert. Many of the problems that need expert 
systems can be reduced to fundamental problems of pattern classification and association. Some of these 
problems will be ideally suited for adaptive networks. 
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APPENDIX    B 

GTE PROCESS MONITOR 

R. S. Sutton 
GTE Laboratories 

Waltham, MA 02254 

This application involves using neural network learning techniques to predict from 100-200 sensor 
measurements the yield and other performance measures of a fluorescent-bulb manufacturing plant (see 
Figure B-l). By permitting a better identification of the variables that influence the performance of the 
plant, substantial improvements in cost and quality can be made. The function performed by the neural 
network is essentially the same as that performed by conventional statistical analyses, but with significant 
computational advantages. 

For example, a one-layer Adaline network computes essentially the same quantities as a linear regres- 
sion; both compute numbers relating independent variables (the sensor measurements) to dependent vari- 
ables (factory yield and other performance measures). In the limit, both techniques in fact produce exactly 
the same numbers. The difference is that the neural network processes the data incrementally, whereas 
linear regression is a batch process. The factory generates a new set of independent and dependent sensor 
measurements every five minutes. The neural network processes each five-minutes'-worth of data as it 
is generated, whereas conventional regression techniques require all the data to be collected for weeks, 
months, or years, and then processed all at once as a batch. 

The network's incremental approach has the obvious advantages: its statistics are always up to date 
and it requires less memory. In addition, the processing required is only 0( n), where n is the number of 
sensors - whereas the processing required by linear regression is 0(n ). For hundreds of sensors, this is a 
tremendous difference; the network could be implemented on a much smaller computer, or it could be used 
with many more sensors, with more frequently sampled sensors, or with more nonlinear terms considered. 
In general, the network solution appears better at efficiently tracking the changing relationships in a large 
data set of this nature. By applying both approaches in the same environment to the same process, we 
should be able to make a valid and accurate cost performance comparison. 

In addition to the single-layer Adaline network, we will also use multi- layer backpropagation net- 
works to capture nonlinear relationships, and temporal-difference learning to capture temporal relation- 
ships. Temporal- difference learning methods are also expected to yield faster learning and additional 
computational savings [1]. Future plans are to move from process monitoring to process control using 
reinforcement learning techniques. This application is currently under development and will be installed 
in 1988. Algorithm development is currently proceeding using a simulation of the manufacturing line. 

The special features that make this application significant are: 

1. It will permit a direct comparison of neural network and conventional statistical 
methods; 

2. If successful, the techniques will permit substantial cost savings in the full range of 
manufacturing applications; 

51 



3. A first level of success relies only on existing, well-understood neural network tech- 
nology, that is, the ADALINE; 

4. A neural network learning algorithm is used to track a moving process, extrapolating 
from a large database; and 

5. The application is precursor to using neural networks for process control. 
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Figure B-l.    Connectionist Learning for a Fluorescent Bulb Manufacturing Process Line. 
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APPENDIX    C 

SPEAKER-DEPENDENT ISOLATED WORD SPEECH RECOGNITION (E.G., 
INTEL'S iSBC 576) 

M. E. Hoff 
Los Altos Hills, CA 94022 

Speech is one of the most natural forms of communication between humans. It would therefore be 
highly desirable for humans to be able to use speech to communicate with machines such as computers. 
The design of a full natural language speech recognition system appears to be beyond today's technol- 
ogy because of the enormous complexity of human speech. One approach to making speech recognition 
feasible is to constrain the form of speech to be accepted. In this way, it becomes possible to achieve 
reasonable performance with a relatively simple system. 

The most common constraints applied are: 

• Limiting the use of the system to a single speaker at a time. Each such user must 
train the system by providing examples of his speech. Generally, there is much 
less variability in a single speaker's utterances than there is over a population of 
speakers. 

• Limiting utterances to isolated words or phrases rather than allowing continuous 
speech. In this way, words can be isolated and time- normalized easily. While 
continuous speech recognition is possible using dynamic time-warping algorithms, 
these algorithms require much more computation than those used with isolated words. 

• Limiting the vocabulary. While most humans have vocabularies of many tens of 
thousands of words, typical speech recognition systems limit the vocabulary to a 
few hundred words to save storage and reduce processing time. 

With the restrictions listed above, speech input utterances can be sampled and reduced to patterns con- 
taining up to a few hundred parameters. These patterns are stored during a training phase, then used as 
templates to be compared with new (unknown) patterns when the system is used in recognition mode. 
The word recognition process consists of locating the stored template which most closely resembles the 
pattern generated from the unknown utterance. 

By setting a threshold for acceptance, utterances not in the training set can be rejected as unknown. 
With this technique, if the best match found is worse than the threshold value, the system treats it as "no 
match." This template matching algorithm is equivalent to a type of neural network known as a matched 
filter. Each of the stored templates corresponds to one neuron. These neurons may be considered to have 
dynamically variable thresholds such that no more than one neuron can "fire" for any given input pattern. 

Figure C-1 shows a diagram of such a matched filter speech recognition system. Speech input from the 
microphone is converted to a pattern represented by the set of input values Xi, i = In. Each of the 
templates is stored as a set of weights associated with one neuron which generates an output 
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SjJ =   1 • •  m.  The peak picker selects the largest output, and, if it is acceptable (meets threshold 
requirements), provides the code ;' as an output. If the stored template patterns are binary, the neuron 
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Figure C-l.    Matched Filter Word Recognizer. 

weights are binary values. For this case, the summation process is equivalent to counting the number of 
positions in which the input (unknown) pattern matches the stored template weight. 

When non-binary templates are used, computing the dot product may require some time, as multipli- 
cations must be performed. An alternate procedure consists of summing the absolute magnitude of the 
difference between input value and corresponding weight value. The best match then corresponds to the 
lowest sum. 

As an example of such a system, consider the Intel iSBC 576 speech transaction module. The module 
is implemented as a single printed circuit board, 6.75 x 12.0 inches in size, which contains an 8086 
microprocessor, EPROM program memory, 128k bytes of data memory, a speech front end processor, and 
communication circuits. 

The front end processor is equivalent to a spectrum analyzer which provides measurements of energy 
in 16 frequency bands. This analysis is performed by two 2920 "analog" microprocessors. The outputs of 
this front end are read by the 8086, and placed in a circular buffer. The 8086 processes the contents of the 
circular buffer to establish word onset, word offset, and to perform time normalization. The information is 
then reduced to a binary pattern - i.e., one pattern for each utterance. These patterns are stored as templates 
during the training mode, or are used as the (unknown) input to the matched filter neural network when in 
recognition mode. 
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The matched filter is realized as a program routine by the 8086 microprocessor. This program serially 
scans the stored templates and computes a match score for each neuron. The best score is saved, and 
compared against the acceptance threshold. If the score is above this threshold, the system treats the input 
as matched to the corresponding template. If not, the system responds that the input is unknown. 

In addition to performing the input data formatting and the neural network simulation, the 8086 executes 
several other functions. One of these functions is implementing a "speech transaction processor" which 
is a form of state sequence machine. 

This state sequence machine allows the system to carry on a form of conversation with the user. Differ- 
ent nodes of the state sequence may have different prompts to the user, may limit the acceptable utterances 
to different subsets of the vocabulary, and may have different outcomes for a given utterance. This tech- 
nique allows the system to request clarifying information if it is needed but was not provided by the user, 
and allows one user to transfer the system to another by downloading the new user's templates. 

This system was announced in 1982 and has been in use since that time. A typical application is data 
collection for automobile manufacturing. The inspector wears a headset microphone with a two-way radio 
link to the speech recognition system. Prompts are converted to speech by a speech synthesis module. The 
inspector's hands are free, allowing him to maneuver himself around the vehicle. Should he miss some 
portion of the inspection, the system may prompt him. As soon as the inspection is complete, the speech 
transaction system communicates the information to the factory host computer, which routes the vehicle 
to appropriate repair locations as necessary. Prior systems required the inspectors to carry clip-boards, 
and required manual entry of the inspection data before the vehicle could be routed for any needed repair. 

Typical specifications for the speech recognition system are a 200-word vocabulary, of which 50 words 
may be active (allowed) at any point in the "conversation." The response time is then less than one-half 
of a second, and the accuracy is better than 99% correct for the speaker who trained the system. 

Possible modifications or upgrades to the system include self-adaptation to allow tracking variations 
of the speaker due to colds, fatigue, etc. Inclusion of this modification would require the coefficients of 
the patterns to be variables which can accept small changes. When each unknown pattern is successfully 
recognized, the corresponding template would be changed slightly to make it more like the input pattern. 

A second modification of the system would be to allow continuous speech input. This modification 
would typically require significantly more computation, because the stored templates must be compared 
to the input many more times. Some continuous speech recognition systems have been implemented with 
8086 microprocessors, although it is more likely that much better specifications would result from using 
one of the newer, very-high- performance general-purpose microprocessors, or even a special-purpose 
processor. 
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APPENDIX    D 
LEARNED CLASSIFICATION OF SONAR TARGETS USING A NEURAL NETWORK 

R. Paul Gorman 
Allied-Signal Aerospace Technology Center 

Columbia, MD 21045 
and 

Terrence J. Sejnowski 
Johns Hopkins University 

Baltimore, MD 21218 

D.l    INTRODUCTION 

Neural network models were trained to classify sonar returns from an undersea mine and rock. The 
network achieved a performance level of as high as 100% correct classification on a training set of sonar 
returns, and as high as 90.4% correct classification on a test set. The network classifier performed better 
than a nearest neighbor classifier, and was also better than trained human listeners on the same set of 
signals. An analysis of the hidden units in trained neural networks revealed that spectral shift- invariant 
signal features were discovered by the network and used to achieve accurate classification. Finally, the 
features discovered by the neural network were shown to be similar to perceptual cues utilized by trained 
human listeners. 

D.2   PROBLEM AND APPROACH 

Neural networks were applied to a sonar target classification problem of particular interest to the Navy. 
The remote detection of undersea mines in shallow waters using active sonar is a crucial capability required 
to maintain the security of important harbors and coastline areas. It is often very difficult to distinguish 
active sonar returns from mines and returns from clutter on the sea floor. There is currently no reliable 
signal classification scheme for automatically interpreting such sonar returns. Instead, highly trained sonar 
operators must be relied upon to identify the presence of a mine. The present study was conducted to 
explore the use of neural networks as a means of automating mine-hunting operations. 

The database used for the network experiments were active sonar returns collected from a mine and a 
"mine-shaped" rock positioned on a sandy ocean floor. Both targets were approximately five feet in length 
and cylindrical in shape. The returns were obtained by a diver equipped with a sonar gun at a range of 10 
meters and at various aspect angles. The impinging pulse was a wide-band FM chirp. About 100 returns 
were obtained from each target. The returns were preprocessed to obtain a power spectral envelope which 
provided an appropriate signal representation for input to the networks. The spectral envelope consisted 
of 60 samples whose values ranged between 0.0 and 1.0. 
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The networks used for the sonar classification experiments were composed of three layers of simple 
processing units, an input layer consisting of 60 units, a hidden layer consisting of from 0 to 24 units, and 
an output layer consisting (Figure D-l). Each unit performed a weight sum of all its inputs to determine 
its activation level and then performed a nonlinear transformation on the activation to obtain a continuous 
state value between 0.0 and 1.0. Each unit received input from all the units in the layer below it through 
a weighted connection. The weights on connections could be positive or negative real values and were 
incrementally adjusted to improve network performance. 

OUTPUT UNITS 
(1,0) CYLINDER 
(0,1)  ROCK 

oo 
A 

HIDDEN UNITS 

(0-24)      oooococooooooo 

POWER 
SPECTRAL 
ENVELOPE 

INPUT UNITS 
(60)   moQoooooorr.ono^rx^x"o~o^O("x~>,"r\-'v"rrn 

in 
in 
c< 
oo 
oo 

Figure D-l. Schematic Diagram of the Network. The bottom layer has 60 processing units 
with their states "clamped" to the amplitude of the preprocessed of the sonar signal, shown in 
analog form below the units. The two output units at the top represent the two sonar targets 
to be identified. The layer of hidden units between the input and output layers allows the 
network to extract high-order signal features. The connections between the layers of units 
are represented by arrows. 

The classification task required of the network was to transform the signal representation at the input 
layer to an output pattern that would code for the appropriate signal class. The states of 60 input units 
were "clamped" to the 60 spectral envelope values, and the states of the two output units determined the 
class of the signal: (1 0) for a return from the mine, and (0 1) for a return from the rock. A single learning 
cycle consisted of: 

1. Clamping a sonar return at the input to the network, 

2. Computing the resulting state of each unit, 

3. Comparing the states of the output units with desired states determined by the class 
of the input return, 

4. Computing the total error as the difference between the actual and desired output 
states, and 
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5. Adjusting the weights on each network connection to decrease the error. 

To achieve the final step, the backpropagation learning algorithm was used [1]. 

D.3    NETWORK EXPERIMENTS AND RESULTS 

For each network experiment, a given network was presented with a sequence of training returns during 
which weight values were changed to improve performance. The set of training returns was presented a 
total of 300 times. The trained network was then presented with a set of test returns excluded from the 
training set to determine its ability to generalize. Each experiment with a given network was repeated 10 
times with different initial weight values to average over variations in performance due to initial condi- 
tions. 

The results of one series of experiments which demonstrate the network's ability to learn to classify 
the sonar returns in the training set and to classify new returns in the test set is shown in Table D-1. For 
this series, the training and testing sets consisted of about 50 returns from each target chosen so that each 
set contained returns from all available aspect angles. Performance is given in terms of percent correct 
classification averaged over 10 trials. Experiments were conducted on networks with 0, 2, 3, 6, 12, and 
24 hidden units. A network with no hidden units has only two layers of processing units - an input and 
an output layer. The network with 12 hidden units learned to classify returns in the training set almost 
perfectly (99.8%), and could use the learned classification strategy to correctly classify 90% of the returns 
in the test set. 
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12 99.8 0.6 90.4 1.8 

o 24 100.0 0.0 89.2 1.4 

Table D-1. 

Results for the Aspect-angle Dependent Series 

In order to compare the performance of the neural network to a traditional signal classification technique, 
a nearest-neighbor classifier was designed for the same set of returns preprocessed in the same way. A 
nearest- neighbor classification rule specifies that the class of a new pattern should be assigned the class of 
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the closest known pattern. This technique is generally quite powerful but computationally very expensive, 
since all known patterns must be stored in memory and each new pattern must be compared to all the stored 
patterns to determine its class. The performance of the nearest-neighbor classifier was 82% on the entire 
set of 208 returns. The three-layered network classifiers were consistently better. 

D.4    NETWORK INTERPRETATION 

In addition to demonstrating the ability of neural networks to classify complex signals, we were inter- 
ested in understanding the classification strategy discovered by the networks. One way to accomplish this 
is to interpret the patterns of weights on connections between processing units in trained networks that are 
matched to structure in the signal. We chose a trained network with only three hidden units, but with good 
performance, to simplify the analysis. We analyzed each hidden unit independently and then determined 
the strategy of the network as a whole. Since different signal patterns interact with the weight patterns 
in different ways, we developed a technique which characterized the signals that produced the highest 
activation for each hidden unit. This is analogous to the concept of best feature for sensory neurons in the 
nervous system. 

Through the use of this technique, we identified three signal features that the trained network learned 
to extract from the signal in order to classify the sonar returns accurately: 

1. The rate of signal onset, 

2. The rate of signal decay, and 

3. The bandwidth of the signal. 

One notable characteristic of this strategy is that all three features were extracted independent of the re- 
turn's central frequency. This demonstrated an important cooperation among hidden layer units in learning 
to solve the classification problem. 

One potential limitation of neural networks is that they are sensitive to the input pattern's registration. 
That is, an input pattern that is shifted with respect to the input units represents an entirely different pattern 
to the network. Since the input signal representation for the present problem was a power spectrum, 
shifting a signal pattern with respect to central frequency is the same as shifting the pattern with respect 
to the input units. The strategy learned by the network to overcome the shift-invariance problem is shown 
in Figure D-2. Each of the three hidden units specialized for patterns in frequency bands with different 
central frequencies. 

Psychophysical studies were also conducted to determine the signal correlates of the perceptual cues 
used by trained human listeners. The performance of trained human subjects averaged about 92% on 
training sets. One subject was tested on the same test set used to test the network classifiers and classified 
84% of the test returns correctly. The performance of the three-layered networks were better than the 
performance of trained human listeners. In addition, the cues used by the trained human listeners correlated 
highly with the features extracted by the trained networks. This suggests that the classification strategy 
internalized by the network was in some sense similar to the representation utilized the human classifier. 
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Figure D-2. The response of three hidden units to narrow-band input patterns. Each gray 
bar represents a hidden unit and the area of the rectangles within are proportional to the 
weight-state product of each unit. White rectangles are excitatory and black rectangles are 
inhibitory. The sigmoids at the left of each hidden unit show the output state of the hidden 
unit as a function of the activation level. The three hidden units shown respond preferentially 
to narrow-band patterns with different central frequencies. 

Finally, the difference in performance between human and network classifiers appeared to be related to 
the network's ability to memorize exceptional returns that did not conform to the general classification 
strategy. 
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APPENDIX    E 
A NEURAL NETWORK DECISION LEARNING SYSTEM APPLIED TO RISK 

ANALYSIS: MORTGAGE UNDERWRITING AND DELINQUENCY RISK 
ASSESSMENT 

Edward Collins, Sushmito Ghosh, Christopher Scofield 
Nestor Inc. 

Providence, RI 02906 

Many real-world problems require decisions to be made based on large numbers of inputs that may 
originate from such diverse sources as insurance applications or the outputs of many sensors. The Nestor 
Multiple Neural Network Decision System has been designed to handle such problems. We present here, 
as an example, our application of this system to the problem of mortgage underwriting. This is a specific 
application, using real-world data, of our risk-analysis decision systems. 

Mortgage underwriting, at first glance, would seem to be an unlikely candidate for the application of 
neural networks. This is a problem in risk assessment that might seem to be best solved with a rule- 
based system, as the methodology applied by underwriters is thought to be well understood. Further, 
underwriters must be able to justify the decisions that they make, and it is sometimes said that neural 
networks are not suitable for applications where this is a requirement. In addition, problems in this domain 
often involve the use of large numbers of features ranging from personal income to street addresses. A very 
large volume of data is required to develop a model that would be broad enough to handle the variability 
of such problems and it is known that the training time of many of the popular algorithms grows rapidly 
with increases in the scale of problems, making them unsuitable for applications of this type. 

However, the difficulty of getting underwriting "experts" to specify the rules they use in making their 
more subtle decisions, and the high economic value of reducing the number of bad risks presently accepted 
by underwriters, makes the application of neural network decision systems potentially very valuable. 

Three levels of problems had to be addressed by the system developed at Nestor: 

Mortgage Origination Underwriter: Mortgage origination filters the general pop- 
ulation of potential property owners according to a set of guidelines, some of which 
are well-defined and some of which are loose. Many potential borrowers can be 
assessed for risk through examination of a few economic measures, such as the pro- 
posed loan-to-value ratio, the proposed housing expense-to-income ratio, and the 
proposed total obligations to income ratio. In addition, several binary-valued ques- 
tions readily determine the outcome of an application: these include the existence 
of a bankruptcy or foreclosure, whether divorce proceedings are in progress, and 
employment status. However, once these simple measures have been performed, 
the vast majority of borrowers will require a more careful analysis and weighting of 
the potential risk factors. 
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• Mortgage Insurance Underwriter: Mortgage insurance applicants are, by nature, 
a higher risk group than the general population of mortgage applicants. These ap- 
plicants have already been underwritten by the mortgage originator and assessed 
as less secure cases, which require insurance. Thus, this second-order underwrit- 
ing performed by the mortgage insurer is bound to be more difficult, and prone to 
greater ambiguity. 

• Delinquency Risk Processor: The portfolio held by a mortgage insurance company 
contains some insured risks that will become delinquent over time. Although this 
population is small, it is a high priority to further reduce it since insurance claims are 
the major operating expense for a mortgage insurer. Delinquency risk assessment 
is a third-order filtration of the general population, for loan performance. In this 
case, no expert rules exist at present, since we are dealing with those files already 
accepted by the underwriter expert. For this reason, this problem is bound to be 
most difficult. 

E.1    THE MORTGAGE ORIGINATION UNDERWRITER 

Development of the Mortgage Origination Underwriter began with the study of a pool of mortgage 
applications obtained from a major mortgage originator. These applications had been classified into two 
groups: those that were declined, for a variety of reasons, and those that were accepted. The database 
consisted of 2,032 files, of which 1,179 were files accepted and 853 were declined by human underwriters. 

The feature set of the Mortgage Origination Underwriter consisted of approximately 25 fields selected 
from the full database. These fields included information related to the borrower's "cultural" status: these 
included the borrower's credit rating, the number of dependents, and the number of years employed. Fields 
related to borrower financial status included current income, portion of income due to sources other than 
salary, and amount of obligations other than the principal property. In addition, features were included 
which related to the mortgage instrument, such as the loan-to-value ratio, the type of mortgage, and the 
ratio of income-to- mortgage payments. Finally, there was a class of fields related directly to the property: 
these included the property age, the number of units, and the appraised value of the property. 

The Mortgage Origination Underwriter is based on the Multiple Neural Network Learning System 
(MNNLS) developed at Nestor, Inc. The MNNLS, described in Section E.5 [p. 73], employs an array 
of coupled subnetworks and a controller. We have chosen an architecture of nine coupled networks in a 
3x3 arrangement. Each of the three networks at each of the three levels is focused on a non-exclusive 
subset of the full feature space. This partitioning of the full space has at least two advantages: each 
network space is smaller than the full space, making for a more efficient, easier to train system, and, in 
addition, the cooperative effect of three individual "experts" in a level of the system is used to determine 
the level of confidence for a system decision. The three levels of the architecture serve as a hierarchical 
filter. Networks near the "top" of the structure handle obvious discriminations, while the networks near 
the "bottom," unburdened with the majority of the decisions, focus on fine discriminations. 
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Figure E-1 depicts the accuracy of the system on the patterns identified as a function of the fraction of 
files identified unambiguously. This particular kind of plot is possible with the MNNLS, since the system 
can be configured to identify files with varying degrees of boldness. These configurations of the system 
are user definable at runtime, thus allowing underwriting agency to differentially underwrite a pool of 
mortgages according to value. 
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Figure E-l.    Mortgage Origination Underwriter: System Agreement with Human Under- 
writers. 

This plot shows a clear trend of increasing confusion in the identifications as the attempt rate increases. 
This is due to inconsistencies in underwriting judgments in the training database. Analysis has shown that 
those files identified with high accuracy in the conservative mode are those for which underwriters agree. 
As the system is asked to attempt the more difficult cases, differences in underwriting practices lead to an 
ambiguity in the correct classification of files. Those files identified in the liberal mode are in the difficult, 
"grey" area of underwriter judgment. Overall, the Decision System is found to be much more consistent 
in its classification of similar applications than are human underwriters. 

E.2   THE MORTGAGE INSURANCE UNDERWRITER 

The Nestor Research Group has been under contract with one of the nation's largest mortgage insurance 
agencies to develop an automated mortgage insurance underwriter. The initial goal of mortgage insurance 
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underwriting is to automate the underwriting process and thus reduce processing costs. The second goal 
of predicting loan performance is intended to improve on the underwriting practices currently in place. 

The structure of data flow in mortgage insurance underwriting creates a filtration of all applications 
submitted to the insurer. Of all files submitted for underwriting, 80% are accepted, or certified, while 20% 
are declined as too high of a risk. Of those files which are accepted, approximately 60% are inducted 
into the portfolio (20% are lost to competing agencies). The delinquency rate of the insured portfolio 
is quite low: during the first two years, only about 2% to 3% will become delinquent. Over a six year 
lifetime, as much as 20% of the portfolio will become delinquent. However, this long lifetime makes 
the acquisition of a training base rather difficult: the type of mortgage instruments and the underwriting 
practices themselves change substantially over this period. Study of the certification/declination database 
with the Nestor Learning System technology has produced a prototype mortgage insurance underwriting 
system, dubbed the Simple Underwriter. The nomenclature is intended to distinguish this system from one 
which performs the more complex process of improving on human risk assessment. This system is trained 
on the judgments of the human mortgage insurance underwriters, and learns to mimic their underwriting 
skill. Further, since the system must be able to provide justification if an application is rejected, the 
Mortgage Insurance Underwriter must be able to discriminate between types of declinations. 

The data for development of the Mortgage Insurance Underwriter consisted of examples of applications 
submitted to the insurance agency, and the subsequent classifications of the underwriters. The prospective 
underwriter database on which this study was based consisted of 5,048 applications from all parts of the 
U.S., collected in the period September 1987 to December 1987. The database consisted of 2,597 files of 
certifications and 2,451 declinations. 

The performance of the Mortgage Insurance Underwriter is illustrated in Figure E-2. As in Figure E-l, 
we have plotted the accuracy of the system on the files unambiguously classified as a function of the 
attempt rate of the system. 

The Mortgage Insurance Underwriter is able to process over 30% of applications for mortgage insurance 
with an accuracy of nearly 96%. The system, configured to process all applications, will perform with 
an accuracy of over 82%. The accuracy of the Mortgage Insurance Underwriter is below the Mortgage 
Origination Underwriter. This is because the files submitted to the Mortgage Insurance Underwriter have 
already be underwritten once by humans at the mortgage originator. It is important to note that these 
results are for a system which performs underwriting on applications from all parts of the country: this 
system incorporates the geographic knowledge and skills of all underwriters in the agency! 

An analysis of the source of disagreement between the neural network underwriter and the human under- 
writers reveals that much of the disagreement occurs as a result of different human underwriter judgments 
based on the same file information. In difficult or marginal cases, different underwriters make different 
judgments based on the same information. As discussed in the next paragraph, it has been possible to 
assess the quality of the mortgages certified by a separate criterion, and it turns out that the quality of 
the neural network certified files is consistently higher than those certified by human underwriters. We 
believe that this is the case because the system makes an informed consensus judgment on each case. This 
consensus appears to be superior to the typical underwriter's individual judgment. It might be that if the 
system were trained by the best of human underwriters, it would form an even better consensus judgment. 
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Figure E-2.    Mortgage Insurance Underwriter: System Agreement with Human Underwrit- 
ers. 

A comparison of the quality of various sets of files certified and/or declined by the Nestor Mortgage 
Insurance Underwriter (system) and the human underwriter (underwriter) is listed in Table E-l for the 
case of the System being configured for the 100%-throughput mode of operation. Quality, Q, measured 
by the Nestor Delinquency Risk Processor (DRP [Section E.3]) - a Nestor Learning System trained on 
the actual performance of insured mortgages to predict delinquencies, is defined as 

Q = 
Na-Nr 

Na+ Nr 

where, for a given set, Na is the number of files accepted by DRP, and NT is the number of files rejected 
by DRP. 

In Figure E-3, we plot the quality of various system- and underwriter-certified and declined sets as a 
function of throughput. We note the generally decreasing quality of certified (and increasing quality of 
declined) files as the system throughput increases. This indicates that those files for which the system 
is reluctant to make a decision represent increasing risk. The points on the extreme right of Figure E-3 
(100% throughput) are those listed in Table E-l. Note that the quality of system-certified files is greater 
(and system-declined files is less) than that of the underwriter for all throughput. 

The Mortgage Insurance Underwriter is able to offer a measure of confidence in the accuracy of an 
underwriting judgment. Further, the System provides a list of reasons, ordered according to degree of 
importance, if a file is declined. This functionality, called the Reason Processor, allows a user to understand 
the internal mechanisms employed by the networks in the decision- making process.  It depends on a 
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SET QUALITY 
Certified by both System and Underwriter 
(SC, UC) 0.87 
Certified by System 
(so 0.84 
Certified by Underwriter 
(UC) 0.78 
Certified by both System and Underwriter 
(SC, UC) 0.87 
Certified by System 
Declined by Underwriter 
(SC, UD) 

0.50 

Declined by Underwriter 
(UD) -0.10 
Declined by System 
Certified by Underwriter 
(SD, UC) 

-0.12 
0.87 

Declined by System 
(SD) -0.28 
Declined by both System and Underwriter 
(SD, UD) -0.36 

Table E-1. 

Quality Comparison of Data Sets Certified or Declined by the Nestor Mortgage In- 
surance Underwriter System and by Human Underwriters 
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method, developed by the Nestor Research Group, for determining the gradient of the interclass surface 
within the nonlinear mapping learned by the networks. 

E.3   THE DELINQUENCY RISK PROCESSOR 

Study of the insured portfolio has produced the Delinquency Risk Processor (DRP). This system is 
able to determine the risk that a borrower will become delinquent on a mortgage. This system performs a 
repeated underwriting on files which have already been certified by the insurance underwriters; however, 
the training database has been reclassified according to delinquency history. 

The data which served as the basis for the delinquency database consisted of 111,080 applications taken 
in the period from July 1984 to December 1986. Files which were not delinquent at the time of delivery of 
this database (August 1987) were classified as good cases, and files with any degree of delinquency were 
classified as bad. This classification of the data produced a database of 109,072 good files and 2,008 bad 
files. From this database, a sampling of good and bad files were selected for training. The final training 
database consisted of approximately 4,000 files. 

Exogenous data provided by Wharton Econometric Forecasting Services was added to the good/bad 
database. This data contained 14 time-series of macro-economic variables mapped to Metropolitan Sta- 
tistical Areas in the U.S. In addition, appraisal information, gathered from the appraisal report on the 
principal property was included. These features covered the appraised value of the principal and three 
comparable properties, and a variety of ancillary measurements related to appraisal methodology. These 
features, plus those already described above, constituted the feature set for the DRP. 

In attempting to screen good from bad insurance risks in the set of mortgage insurance applications 
accepted by the underwriter, it must be recognized that for many of the files there is not sufficient data to 
make this decision. The performance of these insured mortgages will be determined by factors that are at 
present unpredictable. Thus, the appropriate response of the decision system for these files is undecided. 
We must base any economic value on that subset of the files for which a DRP decision can be made. 

The resulting system is able to correctly identify 10% of files according to loan performance with a 
greater than 70% accuracy, or nearly one-third of the files with an accuracy of greater than 65%. These 
modest figures translate into a very real savings in liability expenses: this accuracy has been found to 
produce a 12% reduction in delinquencies within the insurance agency. 

DRP in various configurations makes somewhat different decisions on a given data set. The number of 
files accepted, rejected, or undecided varies depending on the conservativeness or boldness of the system. 
To assess the economic consequences of the various configurations, we plot in Figure E-4 the reduction in 
delinquent loans for a given number of loans insured using the DRP compared with the present delinquent 
loan ratio against the increase in loans processed to achieve this reduction. One therefore weighs the 
economic benefits of a reduction in delinquencies against the increased processing costs. 
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Figure E-4.    Delinquency Risk Processor: Delinquency Reduction. 

E.4    COMPUTATIONAL REQUIREMENTS 

The computational requirements of these systems were rather modest: the largest of the three systems 
described had 6,561 neurons (not including the feature detecting cells). On average, there were over 
four million binary- valued connections within a system. The MNNLS architecture allows optimization 
of network traversal times, resulting in an average speed of identification of less than one second on a 
Apollo DN-3000 workstation. Training required an average of five passes over the full training database. 
On the Apollo hardware, this usually required on the order of six-to-eight hours. Subsequent test passes 
in a selected set of system configurations required an additional two hours. 

E.5    OVERVIEW OF THE NESTOR LEARNING SYSTEM (NLS) 

The NLS is composed of multiple decision-making modules, each a specially- designed artificial neural 
network. Each network can be defined to process a different feature subspace of inputs. The NLS has a 
"controller" that synthesizes the outputs of the individual neural networks and directs their training. The 
entire system is software-based and operational on IBM PC/AT, Sun Microsystems, or Apollo Computer 
environments. 
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E.5.1    RCE Network: Neural Network Component of the NLS 

Each of the component neural networks in the NLS is an RCE (restricted Coulomb energy) artificial 
neural network. The architecture of the RCE network specifies three processing layers: an input layer, an 
internal layer, and an output layer. (See Figure E-5.) Each node in the input layer registers the value of a 
feature describing an input event. In general, however, there is no requirement to engineer feature values 
that generate linearly-separable pattern class territories in the feature space for the objects to be identified. 
The RCE network is able to define a class-separating mapping that can support any required degree of 
nonlinearity between pattern class territories. 

INPUT 
LAYER 

MAPPING 
LAYER 

OUTPUT 
LAYER 

? 
8 

Figure E-5.     The RCE Network. 

Each cell in the output layer corresponds to a pattern category. The network assigns an input to a 
category if the output cell for that category "fires" in response to the input. If an input causes only one 
output cell to become active, the decision of the network is said to be "unambiguous" for that category. If 
multiple output cells are active, the network response is "ambiguous." Though confused about the identity 
of the pattern, the network nonetheless offers a set of likely categorizations. Cells in the middle or internal 
layer of the network construct the mapping that ensures that the output cell for the correct category fires 
in response to a given input pattern. 

A cell in the internal layer of the RCE network is associated with a set of points in the feature space. 
The geography of this set of points is defined by the transfer function of the internal cell. For purposes 
of illustration, consider an RCE network with only two cells on the input layer. (In actual applications, 
a user defines as many input cells as he needs to represent his input feature vector to the system.) The 
transfer function can be thought of as defining a disc-shaped region centered at the feature space point 
w, (the vector of weights coupling the ith internal cell to the input layer), with a radius A, around the u/,-. 
Any point (feature vector) falling within this region will cause this internal cell to become active. Each 
processing element in the internal layer sends its signal, via a unit strength connection, to one cell in the 
output layer. The response properties of the output layer are such that, if any of the internal elements to 
which a given output cell is connected are firing, the output cell will fire. 
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Two distinct mechanisms support learning in the network. The first is cell commitment. Cells are 
committed to the internal layer as well as, though less frequently; to the output layer. When cells are 
committed, they are "wired up" according to the RCE network paradigm. Each cell in the internal layer 
is connected to the outputs of each of the cells in the input layer. The output of each internal layer cell 
projects to only one cell in the output layer. That output layer cell is determined by the category of the 
input event. The second learning mechanism in the RCE network is the modification of the thresholds 
associated with cells in the internal layer. Thus, the values of the weight vector u>, and threshold A, of 
each internal cell are changed under separate modification procedures. 

The commitment of cells to the output and internal layers and the adjustment of internal cell thresholds 
are controlled by training signals that move from the output layer back into the system. If an output cell 
(representing a given category of patterns) is off (0) and should be on (1), an error signal of +1 may be 
generated for that output cell. An error signal of+ 1 traveling from the kth output layer cell into the system 
causes a new internal processing element to be committed. Its output is connected to the kth cell in the 
output layer, and its vector of connections Wi to the input layer assumes the value of the current feature 
vector of the input layer (wy• < - /;•, j' = 1 • • • N). The threshold of the cell is set at some positive value 
\0. In the feature space of the system, this adds a new disc-shaped region that covers some portion of the 
class territory for this input's category. (See Figure E-6.) 

Figure E-6.    Feature Space Representation of Cell Commitment in the Internal Layer. 

If an output cell is on (1) that should be off (0), an error signal of -1 travels from that cell back into 
the internal layer. If an error signal of -1 is sent from the kth output unit back into the system, then the 
system responds by reducing the threshold values (Aj) of all the active internal units that are connected 
to the kth output cell. This has the effect of reducing the sizes of their disc-shaped regions so that they no 
longer cover the input pattern. (See Figure E-7). 

Further, this learning strategy is able to map out category regions, even if they are disjoint in the feature 
space. This functionality is critical to recognizing patterns from real-world data where the pattern signature 
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Figure E-7. Threshold Reduction for Active Internal Layer Cells Associated with kih Out- 
put Cell. After modification, [is no longer covered by an internal cell disc for thekth output 
cell. 

at different times, due to different environmental conditions or modes of operation, may in fact consist of 
a set of possible pattern signatures defining a number of disjoint regions in the pattern space. 

The RCE network can thus be viewed as a network that implements a partially distributed, high stor- 
age density memory using a learning process that modifies the number of output and internal processing 
elements according to a feedforward connection paradigm. It is able to define mappings supporting an ar- 
bitrary degree of nonlinear separability. A supervised learning process constructs these mappings rapidly 
and allows for dynamic category learning through its ability to make local updates to memory at arbitrary 
points in time. 

E.5.2    NLS - A Functional Description 

The NLS consists of multiple RCE networks and a controller that both synthesizes a response from the 
outputs of the networks and directs their training. The controller module consists of a fixed set of rules 
for determining system output and training. 

Different RCE networks are coupled to different feature inputs describing the event. In the case of 
multi-sensor systems, different networks may be looking at the outputs of different sensors. Some objects 
may be identifiable on the basis of feature information available to one network and not another. One 
network may, if properly trained, be able to reliably distinguish 01 from 0, but have insufficient information 
to unambiguously decide between 7 and 8. In other words, a network can be an "expert" at resolving 
some pattern classes but not others. The controller must function to ensure that a network trains to make 
whatever discrimination it can. Its strategy for polling networks must take advantage of a network in those 
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cases where it has clear expertise. Further, it must avoid letting a particular network's uncertainty about a 
pattern introduce confusion into the system response. 

E.5.3   NLS Training to Find the Expert Network 

We illustrate how the NLS trains to find and use network expertise with the following hypothetical 
problem. Imagine two classes of patterns, a and /3. Assume that in a feature space representation based 
on information from sensor 1, the two pattern classes consist of two separable (but not linearly-separable) 
point regions. In terms of features based on information from sensor 2, however, the two pattern classes are 
completely indistinguishable (i.e., they share equivalent point sets in the feature space.) (See Figure E-8.) 
Without a priori information as to which sensor can discriminate the two pattern classes, the NLS will 
learn to base its response to these two input types on the basis of information in sensor 1. If the system 
response is incorrect, the controller generates error signals for the component RCE networks. 

FEATURE SPACE 1 FEATURE SPACE 2 

Figure E-8.    An Example of Two Pattern Classes with Separable Territories in Feature 
Space 1, but Nonseparable Territories in Feature Space 2. 

E.5.4   NLS Correlating Outputs of Ambiguous Networks 

An extension of the RCE training algorithm allows a special class of internal cells to develop which can 
map out feature space areas in which multiple class distributions overlap. To an input event occurring in 
such a zone, an RCE network responds with active output layer cells corresponding to the set of classes 
sharing the overlap zone. The NLS controller can correlate the answers of such confused networks to 
arrive at an unambiguous response. 

As an example, consider the situation depicted in Figure E-9. There, network 1 can separate a from /3 
and 7, but not 0 and 7 from each other. Network 2, however, can separate 7 from a and /?, but not a and 
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0 from each other. Once the overlap zones are covered on both networks, an example of 0 will produce 
a confused response of (0,7) from network 1 and (a, 0) from network 2. The controller can synthesize 
these answers to arrive at the classification 0. Thus, even in the absence of any network uniquely qual- 
ified to identify 0, the confused responses of multiple RCE networks can be used to produce a correct, 
unambiguous classification. 

00 

Figure E-9. An Example of Unambiguous Classification of Overlapping, but Mutually Ex- 
clusive Response Fields Achieved by Two RCE Networks. Pattern Class 0 can be uniquely 
identified. 

The obvious modularity (Figure E-10) of decision-making in this system allows new RCE networks 
to be incorporated at any time in system training and use. Further training will commit internal cells 
in the new network for those classes of targets that the previously configured system could not identify. 
For practical applications, an important task is the assessment of the best strategy for placement of new 
networks in an existing architecture; in particular, the placement of the additional networks at upper versus 
lower levels in the system must be considered. 
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APPENDIX   F 

TRAINABLE AND ADAPTABLE NEURAL NETWORKS FOR ROBOTIC CONTROL 

Von Ayre Jennings 
Martin Marietta 

Baltimore, MD 21220 

The potential for robotics within the military is great. However, the realization of this potential has been 
hampered by the much greater than anticipated difficulty in creating computer systems that can provide 
reliable control in complex environments. Two fundamental problems exist: 

• Mathematical models in the form of equations of the mechanics, kinematics, dy- 
namics, and energy states of the controlled devices are very difficult to express and 
solve. A similar problem exists for the processing and interpreting of sensor data. 

• Descriptions of the task to be performed in terms of all of the possible alternate 
actions needed to cope with all situations are also extremely difficult to generate. 
These task descriptions are traditionally in the form of conditional branching, state 
tables, and production rules. The basic problem is that even a moderately complex 
task places an overwhelming burden on the programmer, who must account for ev- 
ery possible interaction between a large number of possible events. 

Neural network models are a radically different approach to computation that offer an alternative to the 
rules and equations that have plagued traditional control systems. The computational behavior of these 
models is a collective property that results from having many relatively simple processing elements act on 
one another in a richly interconnected system. This results in three distinct features of tremendous benefit 
to robotic control: 

• Control functions can be generated implicitly. As an inherent property of the stored 
pattern of weights and connections, inputs to a neural network are transformed 
implicitly into desired outputs without using equations or rules. This will allow 
complex nonlinear transformations - such as inverse kinematics, inverse dynam- 
ics, coordinate transformations, and trajectory formulations - to be performed non- 
algorithmically. 

• Control functions can be learned rather than programmed. By altering weights 
in response to an internal or external teacher, neural networks can learn complex 
nonlinear control functions without explicit programming. Thus, low-level servo 
control functions that incorporate such parameters as backlash, friction, flexibility, 
and load interactions into a single implicit input-output function can be learned. Fur- 
thermore, function generation by learning offers the intriguing possibility of training 
neural networks for task-level control by observing a human expert perform the task. 
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• Multiple control functions can be performed simultaneously. Computations that are 
an inherent, collective, and distributed property of a massively parallel system of 
connections and weights have the potential for enormous power and speed. These 
qualities will be needed to deal with the multiple and complex sensor and actuator 
systems of future robotic mechanisms. 

While it is clear that neural networks have a very significant potential for robot control, very little is 
known about how to specify the best network architecture and training procedure for a particular control 
problem. Furthermore, there have been few studies where neural networks have been applied to actual 
robot hardware. Such studies are a necessary first step towards the development of neural networks that 
can deal with real-world problems. 

F.l    OBJECTIVE 

The overall objective is to use robotic test-beds to investigate the strengths and limitations of basic 
neural network models with the goal of constructing increasingly powerful network structures that dra- 
matically improve the ability of robots to function in the real world. As a first step towards this goal, the 
objective of the experiment described in this report is to investigate the ability of a neural network to learn 
to guide robot movements by observation of human behavior. 

F.2    APPROACH 

The neural network model used in this experiment is the "Cerebellar Model Articulation Controller" 
(CMAC), developed by Dr. James Albus at the National Bureau of Standards [ROB-1, p. 164]. CMAC is 
basically a trainable function generator. It uses a table look-up method to implement complex nonlinear 
functions implicitly rather than by mathematical solution of equations. Unlike the perceptron, CMAC can 
implement any smooth and continuous function, including the exclusive OR function and other higher 
order problems, using simple guaranteed learning procedures such as the Widrow-Hoff algorithm. CMAC 
has an additional advantage that it can operate in real time on conventional digital computers. 

In CMAC, a pattern of input values is mapped into tables of random numbers (Figure F-l). These 
numbers, in turn, serve as addresses into a look-up table where trainable weights are located. The outputs 
for the transformed inputs are determined by summing the values of the designated weights. As a result 
of the structured input mapping, sets of memory locations corresponding to similar input conditions will 
overlap. This results in the property of generalization between nearby input states. Generalization allows 
CMAC to predict on the basis of a few representative learning experiences what the appropriate behavioral 
response should be for similar situations. This is essential in order to cope with the complexities of real- 
world environments where identical sensory input combinations seldom, if ever, reoccur. 

The fact that for N input variables with R distinguishable levels there are RN possible inputs prevents 
a simple one-to-one mapping between input and output states using tables of practical size. However, 
CMAC is based on the assumption that real-world constraints limit the number of possible input-output 
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Figure F-l.    Cerebellar Model Articulated Controller (CMAC). The CM AC is a table look- 
up method for training arbitrarily complex input-output functions. 
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values that are likely to be encountered. This mapping of a very large input space into a smaller, more 
manageable memory space is achieved, first of all, by limiting the range of random numbers found in 
the initial look-up table. A second many-to-few mapping technique uses hash coding to take the random 
numbers generated by all of the inputs and produce one set of addresses to be summed as the output. 
Together, these two techniques allow very complex nonlinear functions dealing with many input vari- 
ables to be generated in real time using conventional computers such as the Motorola 68020 used in this 
investigation. 

The test bed for this experiment consists of an industrial robot with a forklift end-effector on which is 
located a series of infrared proximity sensors (Figure F-2). The task for the neural network is to guide the 
insertion of the forklift into a pallet that is offset in all six dimensions. This requires the network to learn 
to generate a Cartesian trajectory command (x, y, z, roll, pitch, yaw) to the conventional robot controller 
based on the pattern of sensor input values. This task is very difficult for conventional control systems 
because the relationship between a particular pattern of sensor readings and the appropriate movement 
direction is extremely complicated and nonlinear. 

a) ROBOT TEST-BED b) LASER  DIODE PROXIMITY SENSORS 

FORK-LIFT 

END-EFFECTOR V|DEO 
PALLET   \       CAMERA, 

INDUSTRIAL 
ROBOT 

PROXIMITY 
SENSOR INPUTS 

FIELD  OF VIEW 
FOR PROXIMITY 

SENSORS 

Tl 
< 
IAJECTORY 
COMMAND 

/A\ CMAC 
ACTIVATOR 

DRIVE SIGNALS 

NEURAL NETWORK CONVENTIONAL LOW 
HIGH LEVEL CONTROLLER   LEVEL ROBOT CONTROLLER 

Figure F-2. Robot Test-bed to Study Sensory-guided Object Acquisition. The neural net- 
work is required to learn to use inputs from proximity sensors to generate trajectory com- 
mands to an industrial robot that enable the robot to insert the fork-lift into a pallet. 

The basic approach to teaching the neural network is for a human operator to grasp the end effector and 
perform the pallet acquisition task (Figure F-3). This is accomplished using a 6-DOF force/torque sensor 
on the robot wrist as a joystick. The direction of the forces exerted by the operator is used to specify 
the desired trajectory command to the robot control system and to the learning procedure for the neural 
network. The goal of the learning procedure is to adjust the network weights so that a particular pattern of 
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proximity sensor inputs generates a trajectory command that is identical to or very similar to the command 
generated by the human operator. After some learning criterion has been achieved, the neural network 
output is connected to the low-level controller to carry out the pallet acquisition task autonomously. 
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Figure F-3. Method for Teaching by Observation of Human Task Performance. The neural 
network learns to associate patterns of proximity sensor inputs with the trajectory commands 
generated by the human operator. 

A major consideration in using a human as the teacher is making sure that the information available to 
the neural network is similar to the information used by the human to make a particular guidance adjust- 
ment. For example, fork lift movements made beyond the range of the proximity sensors obviously cannot 
be used as teaching examples. It is not necessary that the sensors of the human (vision, proprioception) 
and the neural network (range) be of the same modality. The requirement is for the network inputs to 
provide sufficient information that is correlated with the outputs generated by the human teacher. 

It should be emphasized that in this application the neural network performs the high-level control 
function of formulating a movement trajectory, while the low-level servo control function is performed 
by a traditional servo system. Work is in progress to implement both high- and low-level functions in 
a structurally-specialized CMAC system. In this system, multiple CMAC modules will be arranged in a 
hierarchical manner to perform high- and low- level functions. In addition, there will be a parallel arrange- 
ment of CMAC modules dealing with different sensory modalities. By configuring relatively simple and 
easily understood modules into increasingly complex structures, it should be possible to generate complex 
robot behavior while avoiding the scalability and training problems inherent in large homogeneous neural 
networks. 
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F.3    RESULTS 

As a preliminary experiment to the use of the force/torque sensor as a joystick, a manual teaching 
method was used. In this method, the desired trajectory command for a particular teaching situation is 
entered by a keyboard. With this technique, very encouraging preliminary results have been obtained. 
The neural network has learned to acquire the pallet from any arbitrary starting position with as few as 
seven teaching points. 

To demonstrate the power of the teaching technique, a previously-trained neural network was presented 
with the problem of dealing with two pallets stacked on top of each other. The normally acquired bottom 
pallet was rotated away from the robot, making it impossible to acquire. Only one teaching point was 
required for the network to learn to ignore the bottom pallet and move up to acquire the top pallet. It 
should be emphasized that the teaching point is a particular point of the path - not an entire trajectory, as 
is done with a teach pendent. The neural network's ability to generalize allows it to specify the trajectory 
for points not previously encountered. 

The significance of these results becomes clear when the immense number of possible input combi- 
nations is considered. Ten sensor inputs that are digitized to 100 values result in 100,0 possible combi- 
nations. The fact that successful sensory-guided task performance was obtained in such a large sensory 
input space after only seven teaching instances demonstrates the tremendous potential of neural networks 
for robot control. The ability to learn complex control functions and to generalize in unexpected situa- 
tions will allow robots with neural network controllers to function in environments that were previously 
impossible for traditional control systems. 
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APPENDIX   G 
HUGHES PARAMETER NETWORK FOR AUTOMATIC TARGET RECOGNITION 

(ATR) IN TACTICAL IMAGERY 

M. Oyster 
Hughes Aircraft, Electro-Optical & Data Systems Group 

El Segundo, CA 90245 

G.l    PROBLEM ADDRESSED 

The problem addressed here is the automatic recognition of targets (ATR) in infrared, visible, or range 
imagery. This militarily important problem has been worked extensively by Hughes Aircraft with im- 
portant successes, but many problems remain. The Hughes approach is unique in that a class of neural 
networks called parameter networks is employed. Parameter networks are particularly well-suited to the 
problem of object recognition in natural scenes. Parameter networks provide powerful mechanisms for 
handling the complex and unpredictable characteristics of three-dimensional targets, camouflage, sensor 
noise, and scene clutter. Since these are the key issues for solving the ATR problem, parameter networks 
promise to significantly advance the military effectiveness of ATR systems. 

G.2   PREVIOUS APPROACHES 

Previous approaches are best described by reviewing the generic current- generation ATR system (Fig- 
ure G-l). The approach described in Figure G-l is a statistical pattern recognition technique that involves 
the reduction of the image into a binary silhouette from which primitive shape features can be extracted. 
These shape features form the basis for object recognition. 

The shape features are global attributes which belong to one complete object. In real imagery, fre- 
quently the global shape is too severely perturbed to reliably generate the features. Often, it is lost in the 
silhouette formation process, which is highly vulnerable to noise and variations in target and scene condi- 
tions. In addition, the statistical pattern recognition techniques do not provide a means for recovering from 
occlusion. These problems have been well known to the computer vision community for more than five 
years and a very large number of academic publications have addressed them. The methods developed in 
these publications are too many to mention here, but they have some important common characteristics. 
In order to cope with the uncertainties in natural scenes, highly redundant information is retained and the 
object recognition algorithms are able to function and produce reliable results given partial information. 

The redundancy of the image data can be achieved by providing spatially localized features and the 
image can be transformed into a number of independent representations. Examples of image representa- 
tions include: intensity maps, reflectance maps, edge maps texture maps, color maps, depth maps, Fourier 
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Figure G-l.    Generic Current-Generation ATR. 

spaces, among others. While redundant representations are recognized as being crucial to successful ma- 
chine vision and ATR, the formation of many redundant representations in real time poses new challenges 
to computer technology. Also, the algorithmic problem of combining several sometimes conflicting image 
representations to recognize an object is still a topic of major research. 

Some previous approaches have utilized AI technology. In a significant portion of this work, AI tech- 
niques have been employed to achieve robust image understanding by integrating multiple image repre- 
sentations. AI techniques have been limited by requiring the explicit encoding of a large number of rules 
- a very labor intensive process. 

We believe that the problem of integrating a number of image representations is most naturally rep- 
resented using neural networks. Hughes Aircraft is using neural networks for generating multiple image 
representations (or scene encodings), and we are also investigating neural networks for object recognition. 
In this paper we will discuss object recognition only. 

G.3    HUGHES NEURAL NETWORK APPROACH 

The Hughes ATR neural network is a generalization of the powerful parameter networks of Dana Hal lard 
[1]. Parameter networks provide neural computational structures which transform intrinsic images into 
feature spaces. Patterns of neural activity in the feature spaces correspond to the recognition of objects 
from the intrinsic images. A simple example of a parameter network utilizes the edge image as the intrinsic 
image and points in the parameter space are represented by neurons which encode the grouping of edges 
into complete objects. While this model is very simple, it is also very powerful because the loss of some 
of the edge information does not prevent the recognition of the object. 
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In the Hughes ATR neural network, several intrinsic images are used simultaneously to map to the fea- 
ture space. The larger and more varied the number of intrinsic images, the more detailed a representation 
of the object and its shape is possible. The organization of the neural units in the parameter space depends 
upon a mathematical model. The model defines how intrinsic image properties are encoded into shape, 
target signature or other object attributes. Proper choice of the mathematical model is crucial to preventing 
a combinatorial explosion of neural connections. 

The Hughes ATR neural network uses a number of techniques for increasing the power of parameter 
networks, including: 

• Recursive refinement. Initial parameter estimates are made at low resolution which 
guide the recognition of objects at increasingly higher levels of resolution. This 
greatly reduces the number of connections and speeds convergence of the network. 

• Multi-layer networks. The number of parameters is reduced by transforming the 
problem into a hierarchical grouping of intrinsic image properties into progressively 
more detailed object representations. 

Figure G-2 is a layout of the Hughes ATR neural network. 

G.4   RESULTS 

Hughes has developed a prototype parameter network and tested it on tactical imagery. These tests 
have shown this network to be superior to statistical pattern recognition. Advanced networks are expected 
to produce even higher performance. The network was tested against both occluded and non-occluded 
targets. 

Figure G-3 shows a tank in an infrared image. Portions of the target image have been occluded by 
superimposing solid bars on the image. The parameter network was able to recognize the tank, whereas 
the conventional statistical pattern recognition technology was not. This differential performance can be 
demonstrated over a wide range of cases. 

In addition, experiments were run over a large database of target imagery with realistic signal-to-noise 
ratios, in which none of the targets were occluded. The parameter network had a 20% higher probability 
of recognition than the conventional ATR algorithm. In battlefield environments with occluded targets, 
the performance gain would be substantially higher. 

G.5   CONCLUSIONS 

The Hughes ATR neural network directly addresses the most significant problem in computer vision: 
how to achieve robust object recognition in real time given unpredictable scene and sensor conditions. 
The network: 

• Is massively parallel, 
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Figure G-2. A Neural Network Process to Recognize Shape. Intrinsic image attributes 
are combined to form more complex shape aggregates. A relaxation labeling technique 
integrates the shape aggregates to produce a unique global shape interpretation. 

RESULTS 

Figure G-3.    Parameters Networks for Recognizing Occluded Targets. 
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• Utilizes distributed local process control, and 

• Requires each processing element to perform a very simple pattern matching com- 
putation defined only by the connections between elements of the network. 

The network makes decisions through competitive-cooperative relaxation processes. These relaxation 
processes constitute a parallel search for an object interpretation. The parallel search capabilities give it 
greater speed and flexibility than conventional AI methods, which must perform time- consuming back- 
tracking and conflict resolution. For ATR problems this is crucial. 

While for many applications, learning is a desirable characteristic of neural networks, it is not the key 
issue in neural networks for ATR. This point is particularly crucial with respect to ATR and other vision 
applications. It is simply not practical for a neural network to learn on its own all of the intermediate 
representations required to produce a solution to the ATR problem because the convergence times would 
exceed any reasonable time span. Parameter networks do not employ learning in their operations. 

Parameter networks are a powerful model for solving ATR and vision problems. They exploit the essen- 
tial desirable characteristics of neural networks while representing a prudent compromise to the learning 
convergence problem. Preliminary experimental results have shown that even the simplest parameter 
networks can outperform conventional statistical pattern recognition techniques. Major improvements in 
ATR performance can be realized through the implementation of such networks. 
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APPENDIX    H 
IMAGE CLASSIFIER 

Murali Menon 
MIT/Lincoln Laboratory 
Lexington, MA 02173 

The Neocognitron of Fukushima (1980) is a massively parallel multi-level neural network which per- 
forms visual pattern recognition, including classification of two-dimensional patterns. The model is in- 
variant to shifts of the pattern in the plane, and can tolerate noise-corrupted and slightly deformed images. 
Its architecture models the anatomy of the human retina in a qualitative way. This system also behaves 
like the adaptive resonance model of Carpenter and Grossberg (1985) in that it is self- organizing and op- 
erates without a "teacher." The Neocognitron has a demonstrated capability to discriminate alphabetical 
characters stored in a matrix of 16 x 16 pixels. Performance on handwritten characters in a 19 x 19 
matrix was demonstrated by Fukushima (1983). A more recent study by Stoner and Schilke (1986) has 
confirmed the model's ability to classify dot-matrix characters [VIS-18, p. 149]. While many accurate 
character recognition algorithms already exist, the Neocognitron is noteworthy because it handles posi- 
tional shifts and moderate deformations in the shapes of input characters. These properties suggest that 
Fukushima's model might be very useful in solving more demanding machine vision problems. Work at 
the Massachusetts Institute of Technology's Lincoln Laboratory has produced a simulation of the Neocog- 
nitron on a serial machine. This program has operated successfully on wire frame images embedded in a 
matrix of 128 x 128 pixels. The model was able to classify images by extracting features from the input 
images and retaining only those whose response was above the average. 

H.l    NEOCOGNITRON MODEL DESCRIPTION 

The Neocognitron contains analog processing elements that are referred to as cells. There are two cell 
types: S and C-cells. Both types receive their input through a set of weighted inputs, and produce an 
output by applying a nonlinear function to the inputs. The particular functions used for S and C-cells are 
given by: 

S - cell :    <(>(x)    =   x,    x > 0 
=   0,   z<0 (H1) 

C -cell:   \p{x)    =   x/(a+x) (H.2) 

In addition to the functional differences in Equations H. 1 and H.2, S-cells receive inputs through vari- 
able weights that are adjusted during training, whereas C-cells use fixed weights. When these cells are 
combined together in a multi-layer architecture, the model as a whole has the ability to classify patterns. 

The architecture of the Neocognitron is shown in Figure H-l. The cells are arranged in two-dimensional 
square arrays called planes, indexed by the pointer (k). Planes of like cells are grouped together into layers 
called S and C-layers. An S-layer contains cells described by Equation H.l, while C-layers contain cells 
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described by Equation H.2. An S- and C-layer together form a level indexed by (I). A cell in a given 
layer in a particular plane receives its inputs from a cluster of cells in a plane on the layer below. This 
cluster is referred to as the cell's receptive area. The size of the receptive area is fixed for any given layer. 
The output of each cell in the receptive area is modulated by an adjustable weight for S-cells receiving 
input from a receptive field of C-cells and by fixed weights for C-cells obtaining input from an S-layer. 
The position of a cell in the plane is given by (n), and the relative offset in the receptive field by (i>). 
The top layer contains single C-cells, which represent the classified output. The Neocognitron is strictly 
a feedforward network, where signals propagate from the input to the top layer. The S- and C-layers have 
distinct functions in the Neocognitron, and, when combined with a learning algorithm, allow relevant 
features to be extracted and grouped together to classify different patterns. 

ABSOLUTE CELL 
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LEVELS (I) 
RELATIVE CELL 
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O 

Figure H-l.   Architecture of the Neocognitron. 

The function of a S-layer is to extract features from the patterns of outputs of cells on the C-layer below. 
The output of a S-cell is given by: 

Sout(D = n<i> 
^ i + Y. Y, ' ai • c0ut(i-\) 

l + ri-br Vci/( 1 + rj) 
1 (H.3) 

The adjustable weights (a;) in Equation H.3 are initialized to small random values at the start of a 
training sequence. The adjustable inhibitory weights (bi) are initialized to zero. The term Vci is a weighted 
RMS value of C-cells in the receptive field (Si). In Equation H.3, a S-cell compares the receptive field 
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output in the previous C-layer modulated by a set of learned weights (a;) to its RMS value; a non-zero 
response is obtained only when the weighted response is stronger than the RMS response by a certain 
amount. The parameter (77) controls how selective the S-cell is to learned features (a;) by scaling the ratio 
of weighted to RMS responses. A large value of (77) produces a response only when the learned features 
and the actual output pattern in the receptive field match very closely. The learned weights (a/) become 
sensitive to specific features through the action of a simple learning algorithm. The position and planes 
of the S-cells with a maximum output response are recorded, and the weights associated with these cells 
are updated proportional to the C-cell response in the receptive area, 

6ai(%i) = qrQ   Cout(/-i)(n+ v) (H.4) 

6W*/) = 9/-Vc/-i(n) (H.5) 

In Equations H.4 and H.5, qi is the rate of learning, and q_i is a fixed weighting function in the receptive 
area. Note that the maximum S-cell response for a position (n) can occur on different S-planes (%i)- 
Repeated application of Equation H.4 during training allows different planes on an S-layer to be sensitive 
to different features in the input. 

Proper choice of the selectivity parameter (r/) will classify input patterns either uniquely, or according 
to differences in subsections of the inputs. The interesting point about this procedure is that learning 
occurs automatically. 

The function of a C-layer is to select among the features that were extracted by the previous S-layer. 
The selection is based on those cells in the S-layer that have a response greater than the average response 
across all S-planes in the layer. 

CouKD = i> 
1 + EDl di • s, out(l) (H.6) 

In Equation H.6, di is a fixed weighting function, usually taken to be unity, and Vsi is the average S- 
cell response. A C-cell has a non-zero response if the S-cell output in the previous layer for a particular 
receptive area (Di) is greater than the average output in the same receptive field across all planes in the S- 
layer. The top C-layer is used to encode different patterns by choosing the C-cell with maximum response 
for each input pattern. 

Most implementations of the Neocognitron are multi-level systems with an S- layer and a C-layer at 
each level. Different patterns of connectivity decompose the input image into distinct spatial features and a 
learning rule reinforces those patterns which produce the greatest response. As this type of system learns, 
different S-cells become sensitive to distinct combinations of features in the input plane. The C-layer 
examines all feature groupings and rejects those that yield weak or mediocre output. 

Successive levels act to recognize increasingly complex feature groupings. On the top C-layer, each 
cell comprises an entire plane. Each C-cell in this final layer produces its maximum response only when 
a specific input image is presented. 

The model can tolerate shifts in the plane because each cell in a plane receives inputs through a weighted 
receptive field placed at different positions on the layer below. The use of overlapping receptive fields 
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allows different cells to respond to shifted versions of the same feature. The method is illustrated in 
Figure H-2. Application of the scheme in Figure H-2 across multiple layers produces a top layer C-cell 
that has identical responses for shifted versions of the entire input pattern. The same mechanism that gives 
the model shift invariance also allows patterns to be slightly deformed and still be correctly classified. 

RECEPTIVE 
AREA 

S LAYER 

WEIGHTS 

C-LAYER 

CM 
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s 

Figure H-2.    Mechanism of Shift Invariance in the Neocognitron. 

H.2    RESULTS 

An example of the capability of the Neocognitron to classify patterns was demonstrated by training the 
system on a set of binary input patterns shown in Figure H-3. The Neocognitron was implemented as a 
software simulation on a minicomputer. With the proper choice of the selectivity parameter (r/) at each 
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level, the model was able to classify each vehicle in Figure H-3. A four-level system with six planes per 
layer was used. Each input pattern produced a maximum response in a different position on the fourth (top) 
C-layer. The training was complete (stable weights) after 20 presentations of each of the input patterns in 
sequence. In the process of training, the system produced planes that are sensitive to different features in 
the input patterns. The features extracted by the level 1 S-layer for each of the six S-planes is shown in 
Figures H-4 and H-5. when input image 1 in Figure H-3 is presented to the system. The intensity scale 
in Figures H-4 and H-5 is proportional to the S-cell outputs. Each of the planes has a different set of 
responses: the fourth plane seems to be sensitive to horizontal features, while the sixth plane is sensitive 
to certain vertical features as well. The significance of this exercise is that features were selected, grouped 
together, and the patterns were classified without a "teacher." Further experiments need to be performed 
to determine the sensitivity of the model to noise, its ability to scale to a large number of patterns, and a 
methodology for choosing system parameters, e.g.. rv. at each level. 

INPUT  IMAGE   1 INPUT IMAGE 2 INPUT IMAGE 3 
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Figure H-3.    Input Patterns Used to Train the System. 

H.3    SUMMARY 

The Neocognitron is a model for shift-invariant unsupervised classification of patterns. The model uses 
a multi-level architecture in a feedforward mode to extract and select features to produce a unique clas- 
sification for each input pattern. The top-level C-layer contains planes with single cells whose positions 
are used to classify inputs. From an information processing point of view, the data rate is reduced by 
abstraction of the input pattern into sets of features. A software simulation confirmed the classification 
and shift-invariance abilities of the model. However, for input image resolutions of 128 x 128 pixels 
and higher, many hours of computer time are needed to classify a few patterns. The Neocognitron is 
very promising for pattern recognition problems but is best implemented in parallel analog hardware for 
problems of practical interest. 

The Neocognitron model is very interesting from a neural network design point of view since it incor- 
porates a modular, hierarchical structure where information is coded using a distributed representation 
across many levels. A rough analogy to biological neural systems can be made if each level containing a 
C- and S-layer is taken to be a module. This suggests a very difficult control problem in which a stable 
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Figure H-4.    First S-layer Output Response on Planes 1 -3 for Input Image 1. 
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Figure H-5.    First S-layer Output Response on Planes 4-6 for Input Image 1. 
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system must be designed from several modules with similar time constants. A weakness of the present 
model is that parameters, such as the selectivity (r/), must be specified for each module. The analogy with 
biological systems suggests that feedback between modules plays an important role in "tuning" param- 
eters according to changes in the environment. An interesting extension to the present model would be 
to use feedback to adjust the selectivity at lower levels so as to provide the best classification at the top 
level. This would also elucidate some of the design principles used by evolution in building "real" neural 
systems. 
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APPENDIX    I 
A MODEL RETINA WITH PUSH-PULL, COOPERATIVE RECEPTORS PROVIDING 

ADAPTIVE CONTRAST SENSITIVITY AND RESOLUTION 

Michael H. Brill, SAIC 
Falls Church, VA 22046 

and 
Doreen W. Bergeron, SAIC 

Tucson, AZ85711 
and 

William W. Stoner, SAIC 
Billerica, MA 01821 

The visual sense is an instrument for survival, and has evolved under some of the same constraints 
facing designers of computer-vision systems. For example, during the course of a day, the outdoor light 
intensity varies by a factor of 10 billion, but real photosensors (either natural or man-made) tend to see 
contrasts over ranges of less than 1,000-to-one. This difficulty shows up, for example, in photographs of 
objects in deep shadows. Fortunately, most surfaces differ in reflectance by factors less than 100, and the 
lighting varies gradually in space or time (as when a cloud passes in front of the sun or a shadow boundary 
persists in time). Therefore, a photosensor needs to be sensitive only to relatively small changes of light 
intensity about a local average light intensity in space and time. The attainment of such light adaptation 
is a common experience in vision, and also a goal of computer-vision systems. 

Another goal of a functional visual system is to enhance its light-gathering ability in dim light in order 
to combat photon noise. The most familiar way the human eye does this is to enlarge its pupil, thereby 
compromising spatial resolution (more aberrations are present than when the pupil is smaller). A second 
familiar mechanism is the shift to scotopic vision - switching in a receptor system (the rods) which is 
dense in photopigment and wired to perform spatial integration over large retinal areas. A third strategy 
- the subject of the present discussion - is to wire the photopic (cone) system so it adapts automatically 
to dim light by performing more spatiotemporal integration and less differentiation. 

The shift in the set-point of dynamic range of vision is adaptive contrast sensitivity, and the variation of 
spatiotemporal properties with light intensity is adaptive resolution. We describe here a model retina [1], 
called Iris, that has both these properties. The model was simulated on a Sun Microsystems workstation in 
FORTRAN. Besides having attributes that are desirable for a robotic visual system, the model retina bears 
some instructive similarities to human vision. The photosensor design is based on a photoreceptor model, 
and the conducting grid may be realized by tight-junction coupling of receptors and by horizontal-cell 
interconnects. 

In the model retina, transduction of light into receptor response is the result of ionic photoconduc- 
tors embedded in the receptor cell membrane. Depending on its instantaneous state, each photopigment 
molecule in the membrane can open a conducting channel to either of two monovalent cationic species. 
When a photon is incident, the receptor quickly opens a channel to the first of these species, then slowly 
closes this channel and opens a channel to the other species, and finally returns to a non-conductive state 
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(by the addition of metabolic energy). The ionic species are driven by membrane voltages in opposite 
directions, so the receptor acts in a "push- pull" way. As in human vision, the voltage response is zero 
to a sustained (steady-state) light; the response versus log-intensity function shifts to the time-averaged 
intensity, thereby giving the adaptive contrast sensitivity desired for a visual system with limited dynamic 
range. Also, the receptor's response is governed by photopigment kinetics whose rate increases with light 
level, so its temporal resolution increases with light level. Hence the model retinal has adaptive temporal 
resolution - as desired to defeat photon noise. The photopigment kinetics are described by a set of coupled 
first-order differential equations provided in Figure I-1. 
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Figure 1-1.    Photopigment Population-transition Model for the Iris Retina. 

The adaptive time behavior of the model receptor has an additional helpful property borne out in our 
computer simulations. A pulse of light causes a response that decays slowly to steady state; however, a 
pulse of darkness produces only a short-duration change of response. This is fortunate behavior for an eye 
that has to blink. See Figure 1-2 for simulations of the model receptor response to changes in light level. 

The adaptive temporal resolution of the model retina has a simple counterpart in the spatial domain. 
The model retina is tiled with a lattice of photoreceptors, wired together with a passively conducting grid 
of constant conductivity. The visual signal for each receptor - a transmembrane voltage - is now modified 
by lateral interaction (see Figure 1-3). When the retinal illumination is (and has been) very low, most of the 
current passes between receptors when light hits one of them, and the receptors are functionally coupled. 
However, when the eye is light-adapted, the receptors tend to keep to themselves; very little current flows 
between them. This behavior shows up as an "iris" of lateral influence, contracting in the presence of light 
and dilating when light is removed. It provides a simple mechanism whereby visual acuity can be traded 
off against light sensitivity as the prevailing light gets dimmer. 
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Results of an Iris simulation provided in Figure 1-4 demonstrate this intensity-dependent spatial resolu- 
tion. The test pattern is split into two portions along the diagonal. Above the diagonal, a pattern of black 
and white squares recedes into the upper left corner. Below the diagonal there is a cosinusoidal pattern 
with linear FM modulation in the radial direction (Fresnel pattern). The limiting resolution is determined 
by the discrete photoreceptor sampling at high light levels. This is demonstrated in Figure 1-4, where the 
peak light level is 0.12 of the level that would bleach 10% of the photopigment into a state which re- 
quires a metabolic input before returning to the ground state. At one-tenth this light level (see Figure 1-4), 
a small decrease in resolution is evident because of spatial averaging among nearby photoreceptors. A 
further ten-fold decrease in the light level results in the obvious reduction in spatial resolution shown in 
Figure 1-4. Such intensity-dependent resolution is also found in human vision. 

^max = 012 X CRITERION 

(Criterion:  B/C = 0.1) 

rf>(b)    =01 vmax     "• ' ""max Ac)    =0 01   <*>'"' wmax     »».«•      'max 

Figure 1-4. Intensity-dependent Adaption of Resolution in the Iris Model Retina for a 
Squares/Zone Plate Input Test Pattern. (Left Image:) Light level on the model retina re- 
duced by a factor 0.12 from saturation. (Middle Image:) Light level reduced by a factor 
0.10 compared with (Left Image). (Right Image:) Light level reduced by a factor 0.01 
compared with (Left Image). 

In common with human vision, the model retina displays Weber's law (proportionality of increment 
threshold to a pre-existing background intensity over a much greater intensity range than the instantaneous 
dynamic range of the receptor. 

Iris was designed to give repeatable response in dim light to visual scenes that are nominally the same 
except for photon noise. The repeatability was bought at the expense of spatiotemporal resolution. Re- 
peatability of percepts from the same reflecting objects is a necessary but not sufficient condition for 
lightness constancy and color constancy - the illuminant- invariant assessment of reflectance information. 

S 

I 
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When implemented in VLSI hardware, Iris promises to be very helpful in robotic pattern recognition - 
in which invariances must be computed robustly in the presence of noise. The robotic application will be 
appropriate even when the dynamic range of photosensors is extended to exceed that of human vision. A 
large extension of dynamic range at the photoreceptor level must always be in the direction of increasing 
intensity; increased dynamic range at low intensities requires mechanisms like those in Iris to pool the 
photoreceptor responses in space and time to provide a reliable signal in the presence of photon noise. 

The next logical step in developing Iris is to implement the model in analog electronics by means of a 
two-dimensional lattice of photosensors attached to a passively conducting grid. The implementation of 
early visual processing in silicon has some precedent. Carver Mead of Caltech has developed a chip that 
contains receptors with a very large dynamic range [2]. These receptors have a logarithmic nonlinearity, 
and are connected by a resistive grid that offers center-surround organization and makes the output of the 
receptor array independent of change of light intensity by the same factor over the entire array. However, 
there does not seem to be an adaptation "iris" on the receptive field size of the output channels that pools 
the photoreceptor responses adaptively to the light level in order to combat photon noise. 

Another retinal model which does have an intensity-dependent spatial weighting function is called IDS 
[3,4]. The Iris model differs from IDS in that Iris incorporates temporal as well as spatial adaptation, at 
the expense that the model does not seem to admit the elegant closed-form expressions and theorems of 
IDS. Also, Iris is based on an explicit circuit model that was, in turn, motivated by some facts of retinal 
neurophysiology and therefore may be a useful simulation tool for visual modeling. 

Since the retina is a part of the brain, it is natural to speculate further that the adaptive contrast sensitivity 
and adaptive resolution mechanisms of the retina are used elsewhere in the brain. The adaptive contrast 
sensitivity mechanism of the retina would also be useful in "adapting out" certain unwanted signals, for 
example the presence of several pure tones that mask a more complicated sound signal such as the human 
voice. 

Similarly, the adaptive resolution mechanism found in the retina would be helpful in stimulus gener- 
alization and pattern recognition. At high levels of stimulation, more discrimination should be possible 
than at weaker levels since decisions must be robust against random events such as cluttered, noise inputs 
and internal processing noise. 
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APPENDIX   J 
TRW INVESTIGATION OF SCAN-SCAN CORRELATION AND MULTI-TARGET 

TRACKING 

R. Kuczewski 
TRW ANS Center 

San Diego, CA 92128 

J.l    PROBLEM AREA 

Multi-target tracking and scan-scan track association is an important function in avionics systems, air 
traffic control, and SDL The problem of multi-target tracking involves associating sequences of sensor 
reports with corresponding object. For optimal solutions, the time and computation required to rigorously 
solve the problem grows with n!, where n is the number of tracks, and leads to computational overload if 
n increases beyond the expected number of reports and there are no target unique identification means. 

In the simplest case of the multi-target tracking problem, the input data is a collection of instantaneous 
"snapshots" of a group of moving objects (targets) whose paths may intersect or overlap; and the goal is 
to identify the path (track) each object has traveled. Figure J-1 shows such a sequence of snapshots. The 
paths are identified by correlating the snapshots using some information about the probable motion of the 
objects. The desired solution is an assignment of tracks which best satisfies the known constraints on the 
dynamics of the objects. The problem just described is a two-dimensional spatial tracking problem; in a 
general problem, objects may be tracked through higher-dimensional spaces which include features other 
than location, such as electromagnetic emissions. 

J.2    PRIOR APPROACHES 

The multiple track assignment problem has traditionally been solved using sequential search algorithms 
to test all track association hypotheses using higher-dimensional information returns where possible to per- 
mit pruning the tree search. This task is frequently performed by human operators in the air traffic control 
mode, where many targets are identified by specific labels, and the operator provides the probabilistic 
estimate of the track associations for other targets. 

One obvious method of solving the multi-target tracking (MTT) problem is to exhaustively search all 
possible solutions and choose the one which best satisfies the constraints on the motion of the objects. 
This method is guaranteed to find the best solution; but the computing time increases as n!, where n is 
the number of objects being tracked. The complete search takes too long for even a modest number of 
objects. 

Traditional approaches to this problem attempt to reduce the search space using heuristic tree-pruning 
techniques or by using gating functions which put hard limits on the possible motion of the objects. A 
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Figure J-l.    Input Frames for Multi-target Tracking. 

typical approach is a two-step process. First, a gating function is applied which discards many possible 
solutions, then a heuristic algorithm is used to choose the best one of the remaining solutions. In this 
approach, the gating function must make very safe assumptions, or the correct solution may be discarded 
before it can be examined. However, if the gating function leaves too many possibilities, it may take too 
long to choose among the remaining solutions. Even if the gating function and heuristic are well chosen, 
the processing time still rises as the number of objects increases. 

J.3    NEURAL NETWORK APPROACH USED 

We designed and successfully implemented a neural network solution to the multi-target tracking prob- 
lem which is similar to the conventional approaches exercised by traffic control operators. We imple- 
mented our solution for the two-dimensional spatial tracking problem, but our concept is extendable to 
any number of dimensions. The technique we invented for our MTT system is called Interpolative Prob- 
ability Fields (IPF). This technique is a combination of the Boundary Contour System of Grossberg and 
Mingolla [ 1,2] with interpolation based on the probabilistic dynamics of the targets. The input to our 
system is a collection of snapshots such as shown in Figure J-l. The IPF network finds the most likely 
heading of each object at each time instant, which allows us to "connect the dots" and assign tracks to the 
objects. 

The IPF network contains knowledge about the probable motion of the objects. In general, any prob- 
abilistic function can be used; we chose a Gaussian distribution in distance, turning radius, and heading 
deviation. Figure J-2 shows the resulting distribution function for a specific location and heading. The 
darkness of the shaded areas to the left and right of the object shown indicate the probability that it occu- 
pied that location in the previous time frame and the probability that it will occupy a location in the next 
time frame respectively. 

n 
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Figure J-2.    Probable Object Motion Distribution. 

The IPF system (and neural networks in general) consists of a highly- interconnected array of processing 
elements (PEs). The interconnections can have positive or negative weights of any value. Knowledge is 
represented by the values of the weights on the interconnections. In the IPF, one PE is assigned to each 
point in feature space. Here, the feature space has four dimensions: location (x, y), time (t), and heading 
(9). The output value of a PE represents the probability of that point being included in the solution to 
the problem. The PEs are interconnected so as to find the best global solution to the problem by finding 
the best local solutions that are consistent with neighboring solutions. For example there are excitatory 
connections from each PE to points in the next time slot which correspond to the shape of the probability 
distribution of Figure J-2 (indicating an increased probability that the object occupies the dark areas in 
the next or previous time slots); but there are also inhibitory connections between PEs that represent the 
same location and time but different headings (forcing the network to select only one heading for a given 
location and time). As the network iterates, passing the output values of each PE along the interconnections 
to other PEs, the solution emerges. 

J.4   RESULTS 

We tested the IPF network with several typical tracking problems. Figure J-3 shows a vector display 
of the IPF network solving a two- track problem. The network solves the tracking problem by choosing 
one of eight possible headings for the objects at each time instant. The length of the vectors corresponds 
to the network's "certainty" that the object is heading in the direction of that vector. Initially, all headings 
are assumed to be equally likely, and the vector pattern looks like a starburst. As the network iterates, the 
best heading emerges for each point. 
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Figure J-3.    Multi-target Tracking by Interpolation Probability Field Technique: Simulation 
of two objects with eight possible headings. 
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Figure J-4 shows the IPF network solving a 15-track problem. This example demonstrates that the 
processing time of our system is independent of the number of targets. The network solved the 15-track 
problem in about the same time as the two-track problem. 
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Figure J-4.    Multi-target Tracking by Interpolation Probability Field Technique: Simulation 
of 15 objects with eight possible headings. 

A difficult problem in multi-target tracking is designing a system which can handle late-arriving data. 
If a conventional, algorithmic system has found a good solution to a problem and some back-dated input 
data arrives, it may have to start all over in assigning tracks. Our IPF system can handle late- arriving data 
very well because the system naturally retains some uncertainty in its solution. Figure J-5 demonstrates 
the network's ability to "change its mind" due to late-arriving data. The input data is from two tracks 
which cross in an "x" pattern. The data from the third time frame, which happens to be the center of the 
"x," arrives late. Initially, the network selects two curved tracks, but there is still some uncertainty in 
the headings close to the center. Then the late data arrives, the network continues to iterate, changing its 
answer to be consistent with the new data, and finds the correct solution. The additional processing time 
required to incorporate the late data is less than the time it would take to start over with the complete set 
of data. 
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Figure J-5. Ambiguous Two-Track Example. In this problem, there are two tracks which 
cross in an "x "pattern, but the data for the center of the "x "arrive late. The network first 
chooses two curved tracks, but retains some uncertainty in the center. When the late data 
arrive, the network modifies its solution to be consistent with the new data. 
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The IPF system could be implemented in hardware in the near term using available technology. An IPF 
is locally-connected in a repetitive fashion and does not require modifiable weights. These characteristics 
suggest a straightforward parallel digital hardware. A fully parallel digital hardware could solve each of 
the sample problems we studied in about 50 /us. The same characteristics of the IPF also make it a good 
candidate for an efficient optical implementation in the longer term as optical technology improves. 

J.5    FUTURE PLAN 

Future research will focus on several areas. First, we will look for near- term fieldable hardware imple- 
mentations of the IPF. Second, we will study the application of neural network training techniques to the 
IPF to get it to leam the probabilistic relationships which we now must specify beforehand. Finally, we 
will investigate the total neural network solution to MTT. which combines an IPF filter and a higher-level 
cognitive structure that uses other features. This would be a very high payoff solution to the multi-target 
tracking problem. 
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APPENDIX    K 
MULTIDIMENSIONAL IMAGE FUSION AND SEGMENTATION 

S. Grossberg 
Center for Adaptive Systems 

Boston University 
Boston, MA 02215 

K.1    THE CONTEXT-SENSITIVE PROCESSING OF NOISY MULTIDIMENSIONAL IMAGE 
DATA 

Many AI algorithms for machine vision have been too specialized for applications to real-world prob- 
lems. Such algorithms are typically designed to deal with one type of information - for example, boundary, 
disparity, curvature, shading, or spatial frequency information. Moreover, such algorithms typically use 
different mathematical schemes to analyze each distinct type of information, so that their unification into 
a single general-purpose procedure is difficult at best. For such AI algorithms, other types of signals are 
often contaminants, or noise elements, rather than cooperative sources of ambiguity-reducing information. 

When humans gaze upon a scene, our brains combine several different types of locally-ambiguous 
visual information to rapidly generate a globally consistent and unambiguous representation of color-and- 
form-in-depth. What new principles and mechanisms are needed to understand how multiple sources of 
visual information automatically cooperate to generate a percept of three-dimensional form? 

The Center for Adaptive Systems has been developing such a general-purpose automatic vision archi- 
tecture. This architecture clarifies how scenic data about boundaries, textures, shading, depth, multiple 
spatial scales, and motion can be cooperatively synthesized in realtime into a coherent representation 
of form-and-color-in-depth that is more informative than a representation derived from any one type of 
scenic data taken in isolation. Moreover, it has become clear through cooperative work with colleagues 
at MIT/Lincoln Laboratory that the same processes which are useful to automatically process visual data 
from human sensors are equally valuable for processing multi-dimensional image data from laser radar 
sensors. These processes are called emergent segmentation and featural filling-in. 

These processes are carried out by nonlinear interactions between a pair of parallel systems called the 
Boundary Contour System (BCS) and the Feature Contour System (FCS) (Figure K-l). Such an architec- 
ture promises to provide improved automatic processing of noisy multi-dimensional image data, as well 
as to provide a new technique for penetrating camouflage. This neural network architecture also possesses 
a regular geometry which makes it suitable for implementation in a compact hardware realization that will 
run in realtime in government and industrial applications. 

The theory can be motivated through an analysis of the sensory uptake process. Such an analysis shows 
that there exist fundamental limitations of the visual measurement process at each stage of neural process- 
ing. The theory shows how the nervous system as a whole can compensate for these uncertainties using 
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Figure K-l. Automatic Processing of Noisy Multi-dimensional Image Data Using Emer- 
gent Segmentation and Featural Filling-In. A macrocircuit of processing stages: Monocular 
preprocessed signals (MP) are sent independently to both the Boundary Contour System 
(BCS) and the Feature Contour System (FCS). The BCS pre-attentively generates coher- 
ent boundary structures from these MP signals. These structures send outputs to both the 
FCS and the Object Recognition System (ORS). The ORS, in turn, rapidly sends top-down 
learned template signals to the BCS. These template signals can modify the pre-attentively 
completed boundary structures using learned information. The BCS passes these modifica- 
tions along to the FCS. The signals from the BCS organize the FCS into perceptual regions 
wherein filling-in of visible brightnesses and colors can occur. This filling-in process is 
activated by signals from the MP stage. The completed FCS representation, in turn, also 
interacts with the ORS. 
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both parallel and hierarchical stages of neural processing. Thus the visual nervous system is designed to 
achieve hierarchical compensation for uncertainties of measurement. 

Rules for monocular boundary segmentation and featural filling-in were discovered through an analysis 
of how each type of process interacts with, and complements deficiencies of, the other [3,7,8,9,10,11]. It 
was then noticed that these rules for monocular boundary segmentation and filling-in also provide a basis 
for analysing stereopsis and the suppression of binocular double images [4,5,6]. Such results suggest that 
the popular hypothesis of independent modules in visual perception is both wrong and misleading. Spe- 
cialization exists, to be sure, but its functional significance is not captured by the concept of independent 
modules. 

K.2    THE BOUNDARY CONTOUR SYSTEM AND THE FEATURE CONTOUR SYSTEM 

Our approach specifies both the functional meaning and the mechanistic interactions of the model mi- 
crocircuits which comprise the macrocircuit schematized in Figure K-l. This macrocircuit is built up from 
the two systems mentioned above, the BCS and the FCS. 

The BCS controls the emergence of a three-dimensional segmentation of a scene. This segmentation 
process is capable of detecting, sharpening, and completing boundaries; of grouping textures; of gener- 
ating a boundary web of form-sensitive compartments in response to smoothly shaded regions; and of 
carrying out a disparity-sensitive and scale-sensitive binocular matching process. The outcome of this 
three-dimensional segmentation process is perceptually invisible within the BCS. Visible percepts are a 
property of the FCS. 

A completed segmentation within the BCS elicits topographically-organized output signals to the FCS. 
These completed BCS segmentations regulate the hierarchical processing of color and brightness signals 
by the FCS (Figure K-l). Notable among FCS processes are the extraction of color and brightness signals 
that are relatively uncontaminated by changes in illumination conditions. These feature contour signals 
interact within the FCS with the output signals from the BCS to control featural filling-in processes. These 
filling-in processes lead to visible percepts of color-and-form-in-depth at the final stage of the FCS. 

K.3    EMERGENT SEGMENTATION: BOUNDARY COMPLETION, NOISE SUPPRESSION, 
AND REGULARIZATION 

Each of several spatial scales within the BCS contains a hierarchy of orientationally-tuned interactions, 
which can be divided into two successive subsystems called the Oriented Contrast (OC) Filter and the 
Cooperative-Competitive (CC) Loop (Figure K-2). The OC Filter contains two successive stages of ori- 
ented receptive fields that are sensitive to different properties of image contrasts. The OC Filter generates 
inputs to the CC Loop, which contains successive stages of spatially short-range competitive interactions 
and spatially long-range cooperative interactions. Feedback between the competitive and cooperative 
stages synthesizes a coherent, multiple-scale representation of boundaries, textures, and smoothly shaded 
image regions. 
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Figure K-2. Architecture of the Boundary Contour System: Inputs activate oriented masks 
of opposite direction-of-contrast which cooperate at each position and orientation before 
feeding into an on-center/off-surround interaction. This interaction excites like-orientations 
at the same position and inhibits like-orientation at nearby positions. The affected cells are 
on-cells within a dipole Held. On-cells at a fixed position compete among orientations. On- 
cells also inhibit off-cells which represent the same position and orientation. Off-cells at 
each position, in turn, compete among orientations. Both on-cells and off-cells are tonically 
active. Net excitation of an on-cell excites a similarly oriented cooperative receptive Held 
at a location corresponding to that of the on-cell. Net excitation of an off-cell inhibits a 
similarly oriented cooperative receptive field of a bipole cell at a location corresponding 
to that of the off-cell. Thus, bottom-up excitation of a vertical on-cell, by inhibiting the 
horizontal on-cell at that position, disinhibits the horizontal off-cell at that position, which 
in turn inhibits (almost) horizontally-oriented cooperative receptive fields that include its 
position. Sufficiently strong net positive activation of both receptive fields of a cooperative 
cell enables it to generate feedback via an on-center/off-surround interaction among like- 
oriented cells. On-cells which receive the most favorable combination of bottom-up and 
top-down signals generate the emergent perceptual grouping. 
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BCS operations occur automatically and without learning or explicit knowledge of input environments. 
A perceptual process is said to be pre-attentive if it occurs rapidly and automatically without recourse 
to stored templates or expectancies. Thus the emergent segmentations generated by the model are not 
the result of training on image exemplars. Nor do the equations embody a priori assumptions about 
such variables as direction of illumination or the shapes of objects to be encountered. Instead, the model 
embodies a number of circuits specialized to perform emergent, context-sensitive segmentations of a wide 
variety of images. 

By emergent segmentation, we mean a partition of an image into regions and boundaries that may have 
no direct corollary in differences in gray level of the image itself. Boundaries perceived in this way are 
often referred to as "illusory" when seen by humans.  (See Figure K-3.) Characteristic of the human 
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Figure K-3. Emergent segmentation can be (a) co-linear with image contrasts, (b) perpen- 
dicular to image contrasts at line ends, or (c) diagonal even though there are no diagonal 
image elements. Note that the visible featural contrast (light or dark) stays within inducing 
elements. Reprinted with permission from Beck, Prazdny, and Rosenfield, 1983. 

perception of such boundaries is the control of perception of one part of an image by what surrounds 
that part of the image. The tasks of multiple-scale grouping and regularization are, therefore, approached 
from the unifying standpoint that every scenic input provides its own context, which the BCS uses to 
organize local measures. Moreover, the BCS is sufficiently flexible to maintain several potential groupings 
simultaneously (Figure K-4) and sufficiently rapid, when realized in hardware, to quickly converge on the 
most favored grouping for a given visual scene. 

Regularization refers to the detection of structure at a given scale despite abrupt variations in signal at 
a small scale. Figure K-5 illustrates the BCS ability to detect and complete sharp boundaries over long 
distances in the presence of severe noise. The BCS has no external temperature parameter or a priori cost 
function that controls its segmentation process, as in simulated annealing. Instead realtime cooperative- 
competitive interactions in a feedback loop regulate a rapid convergence to equilibrium. Consequently, the 
BCS automatically self-calibrates its criteria for grouping and segmentation according to the distribution 
of signal and noise in a particular image. Thus the relatively gradual ramp transition of noise statistics in 
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Figure K-4. Examples of Emergent Groupings Discovered by Using the Boundary Con- 
tour System. A computer simulation of emergent groupings that are vertical, vertical-and- 
horizontal, horizontal, and diagonal in response to input patterns, and which contain corre- 
sponding global symmetries within the spatial bandwidths ofBCS interactions. 

120 



s 
8 
5 

NOISE 
DISTRIBUTION /\ 

NOISE 'H 
CORRUPTED '. 
IMAGE 

ORIENTED 
CONTRAST 
DETECTOR 
RESPONSE 

I EQUILIBRATED 
BCS  RESPONSE 

•iVr': 

CONTINUOUS vs ABRUPT 
NOISE DISTRIBUTIONS 

Figure K-5. Image Segmentation in the Presence of Continuously versus Abruptly Chang- 
ing Noise Distributions. Top Curves - Distribution of noise in horizontal dimension of im- 
age. Belo w - Binary images of a rectangle corrupted by the corresponding noise distribution. 
Below - Responses of oriented contrast detectors to the noisy image. Bottom - Equilibrated 
responses of cooperative feedback cells of BCS. For continuous noise (left side), the rect- 
angle is recovered, and the ramped increase of noise in the middle of the image is ignored. 
For abrupt noise (right side), the rectangle is recovered, and the sharp increase of noise in 
the middle of the image supports vertical segmentation. 
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Figure K-5 (left side) is ignored, while a transition that is identical in magnitude but more spatially abrupt 
invokes a segmentation response in Figure K-5 (right side). 

Figure K-6 illustrates the BCS capability for multiple-scale segmentation. Figure K-6 (top) shows 
a curved textured surface, and Figure K-6 (left) illustrates the responses of oriented contrast detectors 
to the image (Figure K-6-top). The equilibrated CC Loop outputs (Figure K-6-right) are not simply 
filterings of contrast at different spatial frequencies, but a detection of the coherence of oriented contrasts 
at a given scale. Note that although the inputs are a pattern of discrete elongated texture elements, the 
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Figure K-6. Multiple-Scale Segmentation. Top: Image of a textured, curved surface 
[adapted from Todd and Akerstrom (1987)]. Left: Response of oriented contrast detectors 
of the OC Filter to the image. Right: Equilibrated response of cooperative feedback cells of 
the CC Loop to the image. 

BCS, in response, produces dense webs of activity. These boundary webs in turn support the perception 
of smoothly curved three-dimensional surface form, as responses from oriented contrast detectors with 
receptive fields of different sizes are grouped differentially by the CC Loop. The worst correlation between 
human psychophysical judgments of three-dimensional shape-from-texture and theoretical predictions 
based upon images such as in Figure K-6 (top) was 0.985. 

The macrocircuit depicted in Figure K-1 indicates that a pre-attentively completed segmentation with 
the BCS can directly activate an Object Recognition System (ORS), whether or not this segmentation 
supports visible contrast differences within the FCS. The ORS can, in turn, read-out attentive learned 
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priming, or expectation, signals to the BCS. In response to familiar objects in a scene, the final three- 
dimensional segmentation with the BCS may thus be doubly completed, first by automatic pre-attentive 
segmentation processes and then by attentive learned expectation processes, as described by adaptive 
resonance theory [1,2]. This doubly completed segmentation regulates the filling-in processes within the 
FCS that lead to a percept of visible form. 

K.4    INTERACTION OF FEATURE CONTOUR SYSTEM AND BOUNDARY CONTOUR SYS- 
TEM: FUSION OF COLOR-AND-FORM IN FILLED-IN REGIONS 

A fundamental issue in visual perception and the design of real-world machine vision systems is how 
the human visual system transforms the incoming distribution of luminance to generate the perceived 
brightness distribution. This brightness-from-luminance problem arises because, even in simple two- 
dimensional displays, brightness does not closely correspond to luminance. The transformation of lumi- 
nance into brightness is a complex relation, involving compensation for variable illumination levels, and 
sensitivity for global aspects of the luminance distribution. 

Grossberg and Todorovic (1987) have developed a theory of two-dimensional brightness perception, 
which includes a computational characterization of featural filling-in within the FCS (Figure K-7). This 
theory has been able to simulate, using realistic image inputs, how color-and-form are fused together in 
filled-in representations of regions. Brightness variations provide information about three-dimensional 
form, depth relations, surface orientations, and material composition of objects, and thus constitute an 
essential component of visually-acquired knowledge. 

These factors are clearly illustrated by brightness constancy and brightness contrast, two classical 
brightness phenomena. An example of brightness constancy is the fact that two identical pieces of paper 
will look about equally bright even if one is well-illuminated and the other is in shadow. Thus surfaces 
of unequal luminance can have equal brightness, as in Example 2 of Figure K-8 (top right). The visual 
system "takes into account" the variability of the illumination, and the brightness percept, in this case, 
correlates with object reflectance (percentage of reflected light) rather than luminance. Therefore, some 
authors have equated the brightness-from-luminance problem with the reflectance-from-luminance prob- 
lem [12,13]. However, there are many brightness effects involving surfaces of equal reflectance that look 
unequally bright. For example, an instance of the phenomenon of brightness contrast is the fact that the 
same gray piece of paper looks brighter against a black background than against a white background, as 
in Example 3 of Figure K-8 (bottom left). Thus the appearance of a portion of the visual field depends not 
only on conditions within that region, but is contextually dependent. 

Figure K-9 and Figure K-10 illustrate computer simulations from this theory of two important phenom- 
ena: the two-dimensional Craik-O'Brien-Cornsweet effect and a McCann Mondrian in which a brightness 
contrast is perceived that has not been explained by reflectance-from-luminance theories. The BCS-FCS 
module thus provides a stand-alone system capable of automatically discounting spurious illumination 
conditions and filling-in fused representations of color-and-form. Such a preprocessed image representa- 
tion may be used as a source of input patterns for a subsequent processor, such as ART 2, which is capable 
of self-organizing a stable pattern recognition code in response to an arbitrary sequence of analog input 
patterns. 
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Figure K-7. Flow chart of how the Feature Contour System discounts variable illumi- 
nants and regulates featural ftlling-in: The thick-bordered rectangles numbered from 1 to 
6 correspond to the levels of the system. The symbols inside the rectangles are graphical 
mnemonics for the types of computational units residing at the corresponding model level. 
The arrows depict the interconnections between the levels. The thin-bordered rectangles 
represent the type of processing between pairs of levels. This simplified model directly ex- 
tracts boundaries form image contrasts, rather than generating emergent segmentations from 
image contrasts. The model's key elements concern how the Level 2 network of shunting 
on-center/off-surround interactions discounts variable illuminants while extracting feature 
contour signals, and how Level 5 hlls-in signals via a nonlinear diffusion process within the 
compartments defined by Boundary Contour System output signals. 

124 



s 

OUTPUT 

_LJ. 

STIMULUS 

EQUAL- 
LUMINANCE 
PATCH. 
NONUNIFORM    BOUNDARY 

BACKGROUND 

OUTPUT 

-LA- 

FEATURE 

STIMULUS 

i_L UNIFORM 
BACKGROUND   BOUNDARY 

LUMINANCE       _^N-^\ \h^\/— 
PROFILE —^ V- —^» V-— 

FEATURE 

-TL 

JL 

^k= 

OUTPUT 

n».L^L' '—^-'— ASYMMETRIC 
BOUNDARY -»*»M*.«^..».« 

BACKGROUND 

—N]^^—->jVVr~   LUMINANCE 
FEATURE 

STIMULUS 

OUTPUT 

,Aii I 
BOUNDARY 

PROFILE 

ft AA h 

EQUAL 
LUMINANCE 
PATCH. 
STRUCTURED 

~^/NrV^pVWV-  BACKGROUND 
FEATURE 

STIMULUS 

Figure K-8. Boundary and Feature Contour System Interactions Giving Contextually De- 
pendent Brightness Constancy. Simulation of Feature Contour interactions in response to 
images with a one-dimensional symmetry: The luminance profile (stimulus) in Example 2 
(top right) is tilted with respect to Example 1 (top left) due to an asymmetric light source, but 
the filled-in percept (output) is the same as that in Example 1 (top left), illustrating discount- 
ing and constancy. Although the small patches have equal luminance in Example 3 (bottom 
left), their filled-in percepts are different - in the direction opposite to their backgrounds - 
illustrating contrast. Although the small inner patches have equal luminance in Example 4 
(bottom right), the filled-in percept of the right patch is darker than that of the left patch - in 
the direction of their surrounding patches - illustrating assimilation. 
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Figure K-9. Simulation of the Craik-O'Brien-Cornsweet Effect. The size of the symbols 
codes the activity level of units at corresponding locations at different network levels. Top 
Left: The luminance distribution. Top Right: A contrast-enhance FCS pattern which is 
insensitive to illuminant variations. Bottom Left: The boundary segmentation within the 
BCS. Bottom Right: The fiUed-in brightness profile at a higher level of the FCS. 
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Figure K-10. Simulation of a Mondrian Image. The depicted network levels are as in 
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APPENDIX    L 

PRESENTATIONS TO THE APPLICATIONS PANEL 

L.1    LIST OF CONTRIBUTORS 

VISION 

VIS-1      AC-coupled retina with cooperative receptors 
Michael H. Brill, SAIC, Falls Church VA 703-538-3710 

VIS-2      Solution of optimization problems in object-level vision 
Richard Elsley, Rockwell International Science Center, Thousand Oaks CA 
805-373-4155 

VIS-3      Application of neural networks to target classification 
Lynn E. Gam, Night Vision Lab, Fort Belvoir VA 703-664-6066 

VIS-4      Multidimensional image fusion and segmentation 
Steven Grossberg, Ennio Mingolla, Boston U., Boston MA 617-353-7857 

VIS-5      Processing of laser radar data with neural networks 
Matthew Kabrisky, Steven Rogers, Air Force Institute of Technology, Dayton OH 
513-255-5276 

VIS-6      Target classification using a self-organizing neural network 
Murali Menon, Lincoln Laboratory, Lexington MA 617-981-5374 

VIS-7      Adaptive edge detection for Automatic Target Recognition (ATR) application 
Michael Oyster, Hughes, El Segundo CA 

VIS-8      Multiple sensor fusion for discrimination 
Leonid I. Perlovsky, Nichols Research Corporation, Wakefield MA 

VIS-9      Application and implementation of dynamical adaptive systems 
Fernando Pineda, Applied Physics Laboratory, Laurel MD 301-792-5000x7260 

VIS-10    Segmentation of textured images using Wigner transforms 
T. Reed, U. of Minnesota, MN 612-625-1316 

VIS-11    Industrial parts inspection 
D. L. Reilly, Nestor, Providence RI 401-331-9640 
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VISION - continued 

VIS-12    Japanese (Kanji) character recognition 
D. L. Reilly, Nestor, Providence RI401-331-9640 

VIS-13    Online character recognition 
D. L. Reilly, Nestor, Providence RI 401-331-9640 

VIS-14    Realtime 3-d object classification 
D. L. Reilly, Nestor, Providence RI 401-331-9640 

VIS-15    OCR recognition of unconstrained hand-drawn numerals 
C. L. Scofield, Nestor, Providence RI 401-331-9640 

VIS-16    Computing shape from shading with neural networks 
Terry Sejnowski, Johns Hopkins University MD 301-338-8687 

VIS-17    DARPA ATR optical processor 
Harold M. Stoll, Northrop, Palos Verdes Peninsula CA 213-377-4811 

VIS-18    Neocognitron evaluation 
William Stoner, SAIC, Bedford MA 617-275-2200 

VIS-19    Machine vision 
H. Taichi Wang, Bimal P. Mathur, Rockwell International Science Center, 
Thousand Oaks CA 805-373-4192 

VIS-20    Distributed processing for invariant recognition and data fusion 
Harry Wechsler, U. of Minnesota, MN 612-625-1316 

SPEECH 

SPE-1    Learning to recognize speech with neural networks 
Jeffrey Elman, UCSD, La Jolla CA 619-534-1147 

SPE-2    Speaker-dependent isolated-word speech recognition (e.g. Intel iSBC 576) 
Marcian E. Hoff, Jr., Consultant, Los Altos Hills CA 415-941-3331 

SPE-3    Speech recognition 
D. L. Reilly, Nestor, Providence RI 401-331-9640 

SPE-4    Mapping visems to phonemes for visual speech recognition 
Ben Yuhaz, Johns Hopkins University, MD 
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SONAR 

SON-1    Learned classification of sonar targets using a massively parallel network 
Paul Gorman, Allied Signal, Columbia MD 301-964-4094 

SON-2    Sonar target classification with a neural network 
J. Harold McBeth, General Dynamics, San Diego CA 619-573-7857 

RADAR 

RAD-1     Adaptive radar processing 
Dean Collins, Texas Instruments, Dallas TX 214-995-3974 

RAD-2    Satellite orbital motion detector from RCS data 
Mitch Eggers, MIT Lincoln Laboratory, Lexington MA 617-981-2664 

RAD-3    Radar target recognition from partial information based on models of neural network 
Nabil Farhat, U. of Pennsylvania, Philadelphia PA 215-898-5882 

RAD-4    Multi-target tracking 
Robert Kuczewski, TRW, San Diego CA 619-592-3381 

RAD-5    Neural network radar signal processor for IFF 
Fred Weingard, Booz-Allen, Washington, DC 703-769-7782 

SIGNAL PROCESSING 

SIG-1    Satellite classification 
Steven Lehar, TEXTRON Defense Systems, MA 617-381-4799 

SIG-2    Removing random noise from EKG signals 
Douglas Palmer, HNC, San Diego CA 619-546-8877 

ROBOTICS 

ROB-1    CMAC: the Cerebellar Model Arithmetic Computer-a neural network 
robot control system 
James S. Albus, National Bureau of Standards, Gaithersburg MD 301-975-3418 
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ROBOTICS - continued 

ROB-2    Control systems that learn 
Richard Elsley, Rockwell International Science Center, Thousand Oaks CA 
805-373-4155 

ROB-3    Parallel distributed control of robotic systems 
Jack Gelfand, David Sarnoff Research Center, SRI, Princeton NJ 609-734-3098 

ROB-4    Tool-use in biological and artificial systems 
Neville Hogan, MIT, Cambridge MA 617-253-2277 

ROB-5    Trainable and adaptable neural networks for robot control 
Von A. Jennings, Martin Marietta, Baltimore MD 301-682-0892 

ROB-6    Robot Navigation 
Chuck C Jorgensen, Thomson CSF-pro, Palo Alto CA 415-494-8818 

ROB-7    Neural dynamics of adaptive sensory motor coordination 
Michael Kuperstein, Wellesley College and Neurogen, Wellesley MA 617-739-2215 

ROB-8    Teaching an adaptive network with visual inputs to balance an 
inverted pendulum 
Viral V. Tolat, Bernard Widrow, Stanford U., Stanford CA 415-723-4949 

DYNAMICAL SYSTEMS 

DYN-1    GTE process monitor 
Richard Sutton, GTE Laboratories, Waltham MA 617-466-4133 

BIOLOGY 

BIO-1    Motion detection in fly and machine vision 
Heinrich Buelthoff, MIT, Cambridge MA 617-253-0549 

BIO-2    Central pattern generator for locomotion in Lamprey 
Avis Cohen, Cornell University, Ithaca NY 607-255-8997 

BIO-3    Study of neuronal networks artificially grown on microelectronic probe substrates 
Mitch Eggers, MIT Lincoln Laboratory, Lexington MA 617-981-2664 

132 



BIOLOGY - continued 

BIO-4    Investigating mammalian neural network modeling parameters 
Guenter Gross, North Texas State University, Denton TX 817-565-3615 

BIO-5    Motion measurement in the vertebrate retina 
Norberto Grzywacz, MIT, Cambridge MA 617-253-0545 

BIO-6    Self-organizing computational maps 
John Pearson, David Sarnoff Research Center, SRI, Princeton NJ 609-734-2385 

BIO-7    DARWIN-HI: a selective recognition automaton 
Gerald M. Edelman, George N. Reeke, Jr., The Neurosciences Institute, 
New York NY 212-570-7627 

BIO-8    Spatial-temporal coding in dynamic models of brain function and 
potential applications 
Gordon Shaw, UC Irvine, Irvine CA 714-856-6620 

DECISION SYSTEMS 

DEC-1    Optimal allocation of active sensors 
George Fusik, TRW, Redondo Beach CA 213-535-0350 

DEC-2    Mortgage delinquency prediction 
C. L. Scofield, Nestor, Providence RI401-331-9640 

DEC-3    Mortgage loan evaluator 
C. L. Scofield, Nestor, Providence RI 401-331-9640 

THEORY 

THE-1    Practical results from NN theory 
Yaser Abu-Mostafa, CalTech, Pasadena CA 818-356-4842 

THE-2    Phase-locking of neuronal circuits 
Frank C. Hoppensteadt, Michigan State U., East Lansing MI 517-355-4473 

THE-3    Random code neural networks 
Alexander Jourjine, Analog Intelligence Corp, Cambridge MA 617-524-4858 
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THEORY - continued 

THE-4    Image and object coding for data compression 
Albert F. Lawrence, Hughes Aircraft, CA 

THE-5    Generalities about neural networks 
Robert Rosen, Dalhouise U., Halifax NS 716-473-4055 

SURVEY 

SUR-1      Neural network Overview on the ESPRIT-II Program 
Bernard Angeniol, Thomson CSF, France 

SUR-2      SDI discrimination problem 
Mike Cain, Booz-Allen, Washington, DC 703-769-7782 

SUR-3      Neural network applications at Hughes Ground Systems Group 
Patrick F. Castelaz, Hughes Command and Control Division, Fullerton CA 
714-732-8622 

SUR-4      Modern data storage and retrieval systems 
Ching-chih Chen, Simmons College, Boston MA 617-738-2224 

SUR-5      Venture capital financing of a neural network company 
Oliver D. Curme, Battery Ventures, L.P., Boston MA 617-367-1011 

SUR-6      Defense applications of neuro computers 
Robert Hecht-Nielsen, HNC, San Diego CA 619-546-8877 

SUR-7      Laser radar data survey 
Jim Leonard, WPAFB, Dayton, OH 

SUR-8      Future command and control systems 
Orin E. Marvel, Hughes Aircraft, Fullerton CA 714-732-5869 

SUR-9      Custom analog VLSI chip development for vision and speech 
Carver Mead, CalTech, Pasadena CA 818-356-6568 

SUR-10    Neural network applications at TRW 
Mike Myers, Robert Kuczewski, TRW, San Diego CA 619-592-3381 

SUR-11    Artificial adaptive neural network systems 
Tom Ryan, SAIC, Tucson AZ 
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SURVEY - continued 

SUR-12    Cellular automata as neural networks: pattern recognition and tracking 
Tommaso Toffoli, MIT, Cambridge MA 617-253-3194 

SUR-13    Applications of neural networks: review of Honeywell's activities 
Jim White, Honeywell Systems-Research Center, Minneapolis MN 612-782-7355 
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L.2    ONE PAGE SUMMARIES OF CONTRIBUTIONS 

VIS-1: A(.'-coupled Retina with Cooperative Receptors 

Investigator: Michael H. Brill, SAIC, Falls Church VA 703/538-3710 

Problem Area: Develop a model for the photoreceptor dynamics in the retina which is photon- 
noise resistant and results in a stable percept independent of illumination and suit- 
able for machine vision. 

Prior Approach: N/A 

Neural Network Approach: Cooperative receptors with three-state activation kinetics using 
short-lived intermediate photopigment states. The model is "AC-coupled" in the 
sense that only temporally varying light/dark gradients maintain a sensory excita- 
tion. Response of the receptor cells is coded as voltage, and the receptors are resis- 
tively coupled. 

Status: Completed model simulation for black/white imagery. 

Results: The model permits an automatic mixture of time/space integration: 
a) for high photon flux each receptor cell responds rapidly, and the neighboring cells 
are decoupled, providing the highest spatiotemporal resolution; 
b) for low photon flux cell temporal response is slow, and neighboring cells are 
coupled to give broader spatiotemporal integration, enhancing light sensitivity at 
the expense of resolution in space and time. 

Future Plans: Apply the key ideas of this model to color perception, and investigate imple- 
mentation in silicon. 

Comments: The model has a strong physiological plausability; specifically, the assumed reac- 
tion kinetics is similar to the one proposed for self-organizing computational maps 
(see John Pearson's contribution: BIO-6). 

Conclusions: A photoreceptor model is proposed that accounts for two important biologically 
observed features: 

• Only temporarily varying visual information is encoded; 

• Light-flux dependent coupling of time/space integration is demon- 
strated. 
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VIS-2: Solution of Optimization Problems in Object-Level Vision 

Investigator: Dr. Richard Elsley, Rockwell International Science Center, Thousand Oaks CA 
805/373-4155 

Problem Area: The analysis of objects seen by imaging systems often involves matching 
problems which are combinatorially unmanageable. An example is the tracking 
of targets through a series of frames of imagery data. 

Prior Approach: Serial methods, such as the window method which explicitly look for suc- 
cessive blips in windows predicted by previous data. 

Neural Network Approach: Treat as optimization problems and solve with special-purpose 
Hopfield networks. 

Status: Simulations of target tracking and several related problems working. Conceptual de- 
sign of special purpose chip done. 

Results: Tracking of 40 simultaneous targets simulated. Deals with missing and extra data, 
track crossings, off-screen data. Problem segmentation is used for large numbers of 
targets. 

Future Plans: 

• Fuse multi-sensor data; 

• Integrate into target classification system; 

• Implement custom network architecture in hardware; 

• Apply method to other problems. 
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VIS-3: Application of Neural Network to Target Classification 

Investigator: Lynn E. Garn, Night Vision Lab, Fort Belvoir VA 703/664-6066 

Problem Area: Target classification with sparse and ambiguous data is a common problem, 
especially with infrared sensors. 

Prior Approach: Shape-dependent parameter classification is difficult to implement with such 
data. 

Neural Network Approach: Developed an analytic simulation model with two features and 
three classes; trained a fully-connected network (two input, two hidden, and three 
output units) with 50 examples using backpropagation and tested it and a K-neural 
network classifier with 10000 examples. 

Status: On-going simulation efforts. 

Results: For these simulations, the neural network achieved a correct response at 4.5% below 
theoretically optimal; the K-neural network with K=l and K=3 achieved 18.4% and 
11.1%, respectively. 

Future Plans: Study the scaling properties implied by an extended image classification prob- 
lem. 

Conclusions: A neural network can extract a near-optimal decision space from sparse and 
ambiguous training data without explicit knowledge of the underlying statistics. 
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VIS-4: Multi-dimensional Image Fusion and Segmentation 

Investigators: Steven Grossberg, Ennio Mingolla, Boston U., Boston MA 617/353-7857 

Problem Area: Combine different types of locally ambiguous visual information to rapidly 
generate a globally consistent and unambiguous representation of color-and-form- 
in-depth. This work is useful, for example, for processing multi-dimensional image 
data from laser radar sensors. 

Prior Approach: AI algorithms for machine vision. 

Neural Network Approach: Emergent segmentation and featural filling- in are carried out by 
nonlinear interactions between a pair of parallel systems called the boundary contour 
system (BCS) and the feature contour system (FCS). The BCS controls the emer- 
gence of a fused three-dimensional segmentation of a scene, while the FCS extracts 
color and brightness signals that are relatively invariant to changes in illumination 
conditions and performs featural filling-in of a scene. The neural network architec- 
ture possesses a regular structure suitable for compact hardware implementation. 

Status: Simulations on a variety of different artificial image data have been completed. 

Results: Automatic segmentation, completion, regularization, noise suppression, and filling- 
in have been demonstrated with this system. 

Future Plans: Couple the image representation resulting from the BCS/FCS interaction with 
a stable, self-organizing recognition code, such as ART II. 

Conclusions: A theory of two-dimensional brightness perception has been able to simulate, 
using varied and realistic image inputs, how color- and-form are automatically fused 
together in filled-in representations of regions. 
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VIS-5: Processing of Laser Radar Data with Neural Networks 

Investigators: Matthew Kabrisky, Steven Rogers, Air Force Institute of Technology, Dayton 
OH 513/255-5276 

Problem Area: Performance comparison of neural network and conventional approaches for 
target recognition of an existing actual laser radar database. All data are prepro- 
cessed by a Zernicke transformation to achieve scale and rotation invariance result- 
ing in a 22-dimensional input vector for each scene. 

Prior Approach: Standard nearest-neighbor classifier. 

Neural Network Approach: A four-layer, fully-connected network with (22, 200, 60, four) 
nodes per layer; about 200 training scenes were presented about 25 000 x using 
backpropagation learning; the remaining 40 scenes represented the test sample. 

Status: Finished research project. 

Results: Within the noise of the data, the conventional and neural network approaches per- 
formed equally well; certain test classes with few examples had rather high error 
rates. 

Future Plans: Repeat comparison with a more extensive, higher- quality database. 

Comments: Since the network has a large number of hidden weights and a rather small training 
set, it is possible that the neural network stored the actual training set explicitly (this 
would have to be tested with a more extensive database). 

Conclusions: Preprocessed laser radar data can be classified with a neural network; at the 
present stage, a clearcut advantage of the neural network approach is not apparent. 
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VIS-6: Target Classification Using a Self-Organizing Neural Network 

Investigator: Murali Menon, M. I. T. Lincoln Laboratory, Lexington MA 617/981-5374 

Problem Area: Classification of preprocessed patterns (wire diagrams). 

Prior Approach: Rule-based feature classifier, for example. 

Neural Network Approach: Fukushima's neocognitron with four levels, eight layers. 

Status: Completed demonstration simulations. 

Results: Classified three different wire models demonstrating shift tolerance and orientational 
invariance; for illustrative purposes, the self-selected features of the intermediate 
layers were also studied. Input data were 128x 128 pixels; classification still worked 
when 35% of pixels were corrupted by random noise. 

Future Plans: Apply the model to actual, preprocessed laser radar data. 

Comments: The model is computationally intensive; current simulations are run on a VAX/8600: 
training of 164 000 nodes with 32 000 weights took four hours of CPU time; for re- 
altime applications, special- purpose hardware would be required. 

Conclusions: Once the system parameters have been properly selected, the system can ro- 
bustly classify different input classes - no re-tuning of the parameters is required. 
The neocognitron is an example of an unsupervised, hierarchical feature detector. 
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VIS-7: Adaptive Edge Detection for Automatic Target Recognition (ATR) Application 

Investigator: Michael Oyster, Hughes, El Segundo CA 213/607-0838 

Problem Area: Find low-level features in FLIR images with high- contrast ratio and low sig- 
nal/noise. 

Prior Approach: Fixed-threshold pixel processing; some features may be lost in noise. 

Neural Network Approach: A three-layered network with fixed weights; the final layer exe- 
cutes a Grossberg-type relaxation with a threshold value that is locally adaptable. 

Status: A conceptual example was discussed. 

Comments: This presentation attempted to give the Neural Network Study's System Appli- 
cations Panel a unique example of a visual processing function which could only be 
performed using a neural network approach. 

Conclusions: ATRs are a very significant defense application. It is easy to define exam- 
ples where neural network algorithms will dramatically enhance the performance 
of state-of-the-art ATR systems. The crucial issues are: which neural network al- 
gorithms will produce the most improvement and what is the best R&D route for 
achieving the improved performance. The issue is not whether neural networks will 
improve ATR performance. 
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VIS-8: Multiple Sensor Fusion for Discrimination 

Investigator: Leonid I. Perlovsky, Nichols Research Corporation, Wakefield MA 

Problem Area: Discriminate RVs among decoys using multiple sensors and classification in- 
formation from kill assessment. 

Prior Approach: AI and statistical pattern recognition techniques. 

Neural Network Approach: Combined unsupervised/supervised learning classifier network 
using maximum likelihood approach for information fusion and parameter estima- 
tion. Neural network has no hidden layers and uses adaptively adjusted nonlinear 
decision regions for flexible classifier boundary construction. Two-layer neural net- 
work weights are fuzzy classification variables equivalent to estimated Bayesian 
probabilities. 

Status: Conceptual stage of development; 12 man-months expended to date. 

Results: Examples of classifier training in simulated scenarios have been executed. 

Future Plans: Optimization of number of neurons and connections for various problems need 
to be studied with limited training data, variable number of classes and types, and 
increased dimensionality of classification space. At present, the classifier retains all 
prior training information; the capability for "forgetting" individual patterns may be 
a necessary development. 

Estimated computational requirements for SDI applications: 

Conventional processor (10 MIPS for 1 500 seconds) could calculate the classifi- 
cation parameters on 103 targets of 10 types using three discrimination features 
(equivalent to 105 neural network connections; 105 targets of 100 types using 10 
discrimination features would require 107 MIPS or 108 neural network connec- 
tions. 

Comments: A unique method of neural network weight estimation is claimed using nonlinear 
hyper-boundaries in feature space. To the degree that this method results in nonlin- 
ear boundaries, there is a conceptual relationship to the Nestor RCE network. 

Conclusions: Noteworthy, yet preliminary work which has still to focus on some of the im- 
portant details of implementation in high-dimensional spaces. 
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VIS-9: Application and Implementation of Dynamical Adaptive Systems 

Investigator: Fernando Pineda, Applied Physics Laboratory, Laurel MD 301/792-5000 x7260 

Problem Area: Find simple and stable algorithms for neural network models which are well 
suited for implementation as physical systems - e.g., analog VLSI or optical hard- 
ware. 

Prior Approach: Standard backpropagation based on finite difference equations is suited only 
to implementation on digital machines. 

Neural Network Approach: Differential-equation-based learning rule which reduces to con- 
ventional backpropagation in the limits of discrete time and feedforward connectiv- 
ity. DE approach amenable to implementation in analog VLSI. 

Status: On-going research funded by JHU/APL and AFOSR. 

Results: Obtained a general method for deriving differential- equation-based learning rules for 
a general class of neural network models. Applied one of the simplest algorithms 
to train a two-layer associative memory. Demonstrated a robust pattern recognition 
module composed of a four-layer network with feedback connections between the 
second, third, and output layers. The first two layers act as an associative memory 
and account for the robustness of the system. Limited shift and rotational invariance 
as well as noise suppression capabilities could be demonstrated for three different 
pictorial inputs of 55 x 24 pixels. 

Future Plans: Dr. Pineda believes strongly that neural network algorithms are ill-suited for 
digital machines and that optimized conventional algorithms will outperform neural 
networks running on digital machines if the task is a naturally symbolic manipula- 
tion task - e.g., traditional AI, NETtalk, etc. Signal processing tasks are not sym- 
bolic, so he expects a significant impact here. Also, some AI tasks might be better 
accomplished by not going to a symbolic representation (see, e.g., the presentation 
by Ben Yuhaz [SPE-4, p. 154]), in which case neural network techniques can be 
expected to have significant impact. 

Comments: Development of massively parallel analog neural machines is essential. (In col- 
laboration with Andreas Andreou, JHU, and Robert Jenkins, APL). 

Conclusions: "Conventional" backpropagation training on a digital computer does not allow 
realistic time estimates for learning on analog chips, which will be orders of mag- 
nitude faster. 
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VIS-10: Segmentation of Textured Images Using Wigner Transforms 

Investigators: T. Reed, Harry Wechsler, U. of Minnesota, MN 612/625-1316 

Problem Area: Unsupervised analysis of pictures with random structures - i.e., texture anal- 
ysis using minimal a priori information. 

Approach: Use of the Wigner transform for spatial/spatial-frequency representations. 

Status: Ongoing research. 

Results: Simple test patterns could be segmented on 64x64 pixel fields; a Cray is recom- 
mended for faster turnaround times. 

Future Plans: The proposed method is sensitive to non-uniform lighting, and segmentation 
of slanted or curved surfaces needs to be demonstrated. 

Comments: For each pixel, this is a strictly serial processing approach, no feedback is re- 
quired. 

Conclusions: A Wigner distribution has been examined as a tool for clustering and grouping. 

VIS-11: Industrial Parts Inspection 

Investigator: D. L. Reilly, Nestor, Providence RI 401/331-9640 

Problem Area: Industrial processes; pattern recognition. 

Prior Approach: Human operators. 

Neural Network Approach: The Nestor Learning System was trained by showing it where 
to look for distinctive differences between parts (but not what to look for) in the 
image. 

Status: Completed. 

Results: Training and tests on three different types of automatic transmission stators yielded 
an accuracy of 97%. 

Future Plans: This work will be extended to a wide range of industrial parts. 

Conclusions: The Nestor Learning System is able to detect subtle distinctions among other- 
wise similar parts (automatic transmission stators). 
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\ IS-12: Japanese I kaiiji) Character Recognition 

Investigator: D. L. Reilly, Nestor, Providence RI 401/331-9640 

Problem Area: Pattern recognition, classification. 

Prior Approach: Human readers. 

Neural Network Approach: Use of the Nestor Learning System to trai on a large data set to 
recognize approximately 2 500 individual characters. 

Status: Completed. 

Results: Recognition of 2 500 distinct characters (classes) on a test set of previously unseen 
examples, with a base accuracy of 92% for Kanji and Hiragana, 95% on Katakana, 
and 97% after additional, user- specific training on problem characters. 

Conclusions: The Nestor Learning System has been successfully trained to recognize patterns 
in a set of approximately 2 500 distinct classes. 

VIS-13: Online Character Recognition 

Investigators: D. L. Reilly. D. Ward. Nestor, Providence RI 401/331-9640 

Problem Area: Pattern recognition, classification. 

Neural Network Approach: Lse of the Nestor Learning System to train a neural network 
in the recognition and classification of unconstrained, handwritten letters, or other 
symbols. 

Status: Completed. 

Results: Accuracies of 98% are obtained on test sets of previously unseen characters. 
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VIS-14: Realtime Three-dimensional Object Classification 

Investigator: D. L. Reilly, Nestor, Providence RI 401/331-9640 

Problem Area: Object recognition, target recognition, quality inspection. 

Prior Approach: Rule-based systems. 

Neural Network Approach: Use of the Nestor Learning System to train neural networks on 
randomly selected images (100 per object). 

Status: Completed. 

Results: 88% accuracy in forced recognition with 100% throughput; better than 98% recog- 
nition for 70% throughput (30% not classified, 2% error). 

Future Plans: Extension of this work is planned to more complex environments. 

Conclusions: Three-dimensional object recognition, using the Nestor Learning System, has 
been established. 

VIS-15: OCR Recognition of Unconstrained Hand-drawn Numerals 

Investigator: C. L. Scofield, Nestor, Providence RI 401/331-9640 

Problem Area: Pattern recognition, classification. 

Prior Approach: Human operators. 

Neural Network Approach: Use of the Nestor Learning System to train a neural network on 
an existing database (from a European postal service). 

Status: Completed. 

Results: 97.5% accuracy on previously unseen test sets. 

Conclusions: The Nestor Learning System can be used in a variety of applications that involve 
recognition of numbers on documents. 
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VIS-16: Computing Shape from Shading with Neural Networks 

Investigator: Terry Sejnowski, Johns Hopkins University MD 301/338-8687 

Problem Area: Find the three-dimensional shape from two-dimensional shading information 
in images. 

Prior Approach: Explicitly, this is an ill-posed problem. 

Neural Network Approach: Use a three-layer feedforward network with 122 input units, 36 
intermediate, and 24 output units; network is trained by backpropagation; represen- 
tation is the principal curvatures; raw data are preprocessed with a Mexican-hat-type 
receptive field with considerable overlap; the output layer represents a distributed 
coding of the curvatures. 

Status: Demonstration simulations completed. 

Results: Cells in the hidden layer organize as edge detectors. 

Comments: DARPA should coordinate a better infrastructure for neural network research. 
The development of standard neural network databases would be very useful for 
neural network research. 

Conclusions: A small neural network by itself does not intrinsically learn; the problem and 
the network need to be structured properly to permit a solution. However, neural 
networks are not just a look-up table; they can find features in data with unknown 
statistics and can 'generalize' by nonlinear interpolation. Neural networks, so far, 
treat only a small piece of the problem of how to intelligently design learning sys- 
tems. 

VIS-17: DARPA ATR Optical Processor 

Investigator: Harold M. Stoll, Northrop, Palos Verdes Peninsula CA 213/377-4811 

Problem Area: Build a high-throughput, fully optical processor. 

Neural Network Approach: "Optical neurons" are realized using saturable two-beam am- 
plification in photorefractive barium titanate; three- dimensional interconnects are 
realized by using volume holograms in photorefractive lithium niobate. 

Status: On-going program. 

Results: System concept developed; optical component subsystems have been successfully 
tested; associative recall has been demonstrated with high-resolution in an optical 
cavity. 
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VIS-IS: Neocognitron Evaluation 

Investigator: William Stoner, SAIC, Bedford MA 617/275-2200 

Problem Area: Demonstrate the classification capabilities of the Fukushima neocognitron. 

Prior Approach: N/A 

Neural Network Approach: Neocognitron as described in Fukushima's article. 

Status: Completed simulation. 

Results: The character recognition capability of the model were verified as described by Fukushima; 
certain internal parameters need to be adjusted properly to make the system work; 
limited translational invariance was also demonstrated. 

Future Plans: Considering the application of the model to gray-level images on a parallel 
machine. 

Comments: The model was implemented on an IBM PC/AT, which severely limited the ap- 
plication potential; the model should be implemented on a parallel machine. 

Conclusions: Fundamentally, the neocognitron works as well as advertised by Fukushima. 
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VIS-19: Machine Vision 

Investigators: H. Taichi Wang, Bimal P. Mathur, Rockwell International Science Center, Thou- 
sand Oaks CA 805/373-4192 

Problem Area: How to extract higher-level information from image data. Areas of con- 
cern are edge detection, motion detection, edge orientation, stereopsis, and motion 
field computation. Both algorithms and analog VLSI implementation are being ad- 
dressed. 

Prior Approach: Fast, special-purpose serial computers. 

Neural Network Approach: A resistive network has been developed to perform spatial fil- 
tering and edge detection. Hopfield networks have been used to implement edge 
detection, stereopsis and a novel motion field computation network. 

Status: Simulations of edge detection and motion field computation using natural images have 
been performed. Chip design for edge detection is in progress. 

Results: Simulations of motion field computation have been successful. A new way for fusing 
oriented-edge and motion information has been suggested. 

Future Plans: Develop new stereopsis algorithm by using edge orientation information. Ex- 
tend motion field network to full three dimensions. Chip development for extracting 
oriented edges. 

Comments: For both algorithm and circuit development, proper choice of neural representa- 
tions is crucial for success. 

Conclusions: Machine vision is a natural area for neural network application. 
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SPE-1: Learning to Recognize Speech with Neural Networks 

Investigator: Jeffrey Elman, UCSD, La Jolla CA 619/534-1147 

Problem Area: The recognition of speech by machine is made difficult by a number of prob- 
lems, which include: 

• Enormous variability in the acoustic signal; 

• Interspeaker differences in pronunciation; 

• Coarticulation ("blurring" together of adjacent sounds); 

• Ambient noise; and 

• Difficulties training the system to recognize new speakers. 

As a consequence, machine-based recognition systems have had extremely limited 
success, and typically work in very restricted environments. 

Prior Approach: Most recognition systems severely limit the speaker database and vocabu- 
lary size; many also require very high signal-to-noise ratios and distinct pauses be- 
tween words. Most systems depend upon fixed acoustic templates for entire words, 
and make use of dynamic programming to compare inputs against stored templates. 

Neural Network Approach: The neural network approach attempts to capitalize on the ar- 
chitecture used by humans to solve the problem. Much of the variability in speech 
(both within a given speaker, and between different speakers) is lawful, and reflects 
the dynamics of articulation. This variability can be exploited, since it provides a 
high degree of redundancy. The neural network approach, in addition, provides a 
mechanism for integrating information from many different sources (e.g., acoustic, 
phonetic, morphological, lexical, syntactic, semantic) in a speedy and elegant man- 
ner. Finally, learning algorithms can be applied to neural networks in order to allow 
for rapid and efficient training. 

Status: Work in this area has been underway since 1981 (funded by ONR, NSF, and Army 
Avionics). A large-scale computer simulation of one neural network (the Trace 
model) has been completed, and is described in the literature. More recent work 
is in progress which focuses on the use of new parallel architectures for process- 
ing sequential inputs, and the use of neural networks for speech compression and 
encoding. 

Results: The Trace model exhibits a wide variety of behaviors which closely resemble exper- 
imental findings regarding how humans recognize speech. The model demonstrates 
in a dramatic way how the neural network can turn the variability of the signal to 
its advantage. Results of neural networks for speech compression and encoding are 
also promising. 
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SPE-1 — continued 

Future Plans: Future work involves a hardware implementation of Trace with the goal of 
achieving realtime performance. (The system will be based on a network of Trans- 
puter processors.) Other work will focus on the representation of time and serial 
inputs in neural networks. 

Conclusions: There are a number of activities which humans do well that machines - to date 
- do very poorly. Recognition of speech is one of these activities. It is likely that 
one significant obstacle to machine performance is use of an inappropriate architec- 
ture for processing. The neural network approach is far better suited to solving the 
needs of tasks which involve (a) simultaneous interactions of many pieces of data, 
(b) flexible responses to dynamically changing inputs, and (c) need for rapid learn- 
ing. There are some very serious challenges ahead, and neural network technology 
remains at a relatively early stage. Still, there are certain tasks that can be accom- 
plished within the short-term future (two years) with existing techniques; and there 
is much more that will be done in the longer term as the consequences of the new 
approach are explored. 
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SPE-2: Speaker-Dependent Isolated-Word Speech Recognition 
(e.g. Intel iSBC 576) 

Investigator: Martian E. Hoff, Jr.. Consultant, Los Altos Hills, CA 415/941-3331 

Problem Area: Develop a speech recognition module capable of at least a 200-word vocab- 
ulary. Speaker dependent (i.e.. training required for each user) and isolated-word 
(i.e., user must provide a short pause between words) requirements acceptable. 

Prior Approach: N/A 

Neural Network Approach: Speech input is preprocessed to provide spectral information 
which is then time sampled to produce a two-dimensional data array for each ut- 
terance. During training, each array is stored as the coefficients of one template of 
a matched filter. Each stored template is the equivalent of one "neuron." 

Status: The system was realized in the form of a standard Intel SBC printed circuit board 
(6.75in.x I2.0in.). The spectral preprocessing was performed by two 2920 proces- 
sors, and the matched filter was implemented by an 8 086 microprocessor running 
a program stored in ERPROM memory. In addition to implementing the matched 
filter, the microprocessor also performs several other duties such as formatting the 
templates, communicating with a host computer, and implementing a state sequence 
machine which controls vocabulary and response. This product was announced in 
1982 and has been successfully used in numerous installations. 

Results: For the speaker who trained the system, the performance is better than 99% correct 
recognition. At any one time (i.e., at any one node of the state sequence), the typical 
number of acceptable words is less than 50. Response time for 50 words is less than 
one-half second. 

Future Plans: Allow self-adaptation by making modifications to the stored templates, and 
modify the algorithm to allow more continuous speech input. 

Comments: A major application for the system has been inspection of automobiles during 
manufacturing. The use of speech recognition allows the inspector to have his hands 
free while he maneuvers about the vehicle. Prior methods required him to carry a 
clip board and pencil. 

Conclusions: A limited vocabulary speech recognition system can significantly improve effi- 
ciency for certain data collection processes where the user needs to have his hands 
free for other functions. 
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SPE-3: Speech Recognition 

Investigator: D. L. Reilly, Nestor, Providence RI401/331-9640 

Problem Area: Pattern recognition and classification. 

Prior Approach: Rule-based and statistical systems. 

Neural Network Approach: Use of the Nestor Learning System to train a neural network 
on the so-called T.I. Database. A proprietary third-party feature extraction process 
reduced the data description of each word utterance to a single 512 bit pattern. 

Status: Completed. 

Results: Speaker dependent test: 97.7% accuracy; speaker- independent test: 97.0% accuracy. 

SPE-4: Mapping Visems to Phonemes for Visual Speech Recognition 

Investigator: Ben Yuhaz, Johns Hopkins University, MD 

Problem Area: Visems are characteristic mouth shapes asociated with normal speech produc- 
tion; it has been found that under noisy conditions speech perception is significantly 
enhanced by visual input. 

Neural Network Approach: Train a fully-connected three-layer network to associate a 25 x 20 
pixel representation of the mouth area as input to a 30-unit phoneme representation 
in the output layer via one hidden layer of 20 units; the phonemes are expressed as 
a vocoder represention. 

Status: On-going research project. 

Results: In a preliminary test 70 pictures and associated sounds have been trained and com- 
pared to a nearest-neighbor classifier with promising results. 

Future Plans: Finish the project, a Ph.D. thesis, under supervision of T. Sejnowski. 

Comments: It is not clear whether the most optimal neural network structure and data repre- 
sentation has been found so far. 
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SON-1: Learned Classification of Sonar Targets Using a Massively Parallel Network 

Investigator: Paul Gorman, Allied Signal, Columbia MD 301/964-4094 

Problem Area: For the design of classifiers in intelligent sensor systems, suitable features 
must be found in the signal; in collaboration with T. Sejnowski, the ability of a neu- 
ral network to find features is explored in the following sonar target classification 
problem: low-noise sonar signatures were obtained in seawater from a metal cylin- 
der and a rock of equivalent size. About 200 signatures were used as a training/test 
set. 

Neural Network Approach: Three-layer, fully-connected, feedforward network, taught by 
backpropagation, with 60 input units, two classification outputs, and one hidden 
layer with 0-24 units. The signals were represented as a power spectral envelope 
over a sliding time window. 

Status: Completed research project. 

Results: For training, about 100 signatures of the sample set were presented 300x; a sensitivity- 
to-random-weight initialization and to training set sequence was noticed; results are 
averages over a total of 10 trials. (These results are from the aspect-angle-dependent 
experiments.) Twelve hidden layer units were sufficient to give better than 99% ac- 
curacy on training sets and about 90% on the test sets; a two-layer network gave 
73%, and human operators gave about 88% correct classification. Analysis of the 
weight distribution for the hidden layers supports the notion that the network primar- 
ily isolates by location of principle attack, bandwidth of the main feature, and decay; 
humans seem to decide on similar principles; the slightly better performance of net- 
work versus human is attributed to the presence of about 10-15% "non-standard" 
signals which do not follow the simple rules and which the network can store ex- 
plicitly. 

Future Plans: Optimal encoding of data, develop a dynamical model based on the present 
work. 

Conclusions: A multi-layer network can be trained as a classifier and may help in the discovery 
of structure or hidden features implicit in unknown data. 
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SON-2: Sonar Target Classification with a Neural Network 

Investigator: J. Harold McBeth, General Dynamics, San Diego CA 619/573-7857 

Problem Area: Classify underwater sonar targets according to type of ship. 

Neural Network Approach: The FFT of the received signal is split into 20 mutually-overlapping 
frequency bins which are introduced in temporal order into a forward-connected 
avalanche network. 

Status: A PC-based simulator model has been developed. 

Results: The neural network has been trained on approximately 13 recorded waveforms (each 
600 ms duration, divided into 20 overlapping temporal segments) of different ships. 
A waveform from one of these 13 classes can be properly classified, even when the 
waveform is corrupted with artificial noise. 

Future Plans: A five-year development time is projected for a field- deliverable unit. 

Comments: Presently the demonstration lacks realistic test data; but realtime use of live test 
data is in development. The system immunity against real-world perturbations of 
the received signal needs to be demonstrated. 

Conclusions: Conclusive evidence for a successful application has not been demonstrated, 
although it is working under laboratory-controlled conditions. 
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RAD-1: Adaptive Radar Processing 

Investigator: Dean Collins, Texas Instruments, Dallas TX 214/995-3974 

Problem Area: Anti-radar tracking problem: passively locate and identify a number of Radar 
emitters; prioritize action according to radar importance. Data are typically very 
noisy. 

Prior Approach: Conventional signal processing. 

Neural Network Approach: Brain state in box (BSB) model to achieve clustering in a multi- 
dimensional decision space. 

Status: Ongoing program sponsored by Wright Patterson AFB. 

Results: 500 pulses, closeness encoded, were fed to the neural network; 10 out of 10 trans- 
mitters were properly located and identified. 

Future Plans: Still 20 months (of 24) to go; direct comparison of neural network approach to 
conventional techniques is to be emphasized. 

Comments: This is a program close at the edge of being classified. Dr. Collins felt that too 
many classification restrictions on as young field as neural networks would be very 
counterproductive. 

Conclusions: In this early stage of development, the neural network approach gives reasonable 
results, as compared to standard techniques, and shows good operation in handling 
the War Reserve Mode of operation. 

157 



RAD-2: Satellite Orbital Motion Detector from RCS Data 

Investigator: Mitch Eggers, MIT/Lincoln Laboratory, Lexington MA 617/981-2664 

Problem Area: Classify a database of radar cross-section returns from six satellites which 
perform three distinguishable orbital maneuvers. 

Prior Approach: Classical classification algorithms. 

Neural Network Approach: Two-layer perceptron model with restricted connectivity; presently 
the data are preprocessed to extract a single decision parameter. An enhanced (as 
compared to backpropagation) learning algorithm for multi-layer networks has been 
developed. 

Status: On-going program. 

Results: For the present database, the trained neural network model was sufficient to identify 
all orbital motion transitions; for the case of a Gaussian distributed variable, the 
model was shown to perform as well as a classical Neyman-Pearson classifier. 

Future Plans: Extend the methodology to include more information extractable from the radar 
cross section data. 

Conclusions: The strength of the neural network classifier is primarily that data with unknown 
statistics can be easily accomodated; the optimal decision threshold is implicitly 
extracted from the training examples. 
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RAD-3: Radar Target Recognition from Partial Information Based on Models of Neural Networks 

Investigator: Nabil Farhat, U. of Pennsylvania, Philadelphia PA 215/898-5882 

Problem Area: Recognition of non-cooperative radar targets from limited information. 

Prior Approach: Images formed by microwave diversity imaging systems are recognized by 
human operators. Imaging radars are prohibitively costly and/or can not operate in 
real time. 

Neural Network Approach: Super-resolved automated recognition from sketchy (incomplete 
and/or noisy) information employing heteroassociative storage and recall. Sino- 
grams extracted from realistic microwave scattering data are utilized as target rep- 
resentations. They offer potential for distortion-invariant recognition from a small 
number of looks (as low as three for three objects stored in a neural network of 
32x32 neurons has been demonstrated). For practical applications, recognition 
from one look regardless of aspect is desirable. This approach could obviate the 
need for expensive microwave imaging systems. 

Status: On-going research program. 

Results: Neural network of 32 x 32 neurons performs the function of storage, processing, and 
labeling simultaneously and discriminates between three radar targets from as low 
as 10% of the sinogram information. 

Future Plans: Make self-organizing neural networks form their own representations of the 
radar echoes and recognize any one of them at a later time with generalization. 
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RAD-4: Multi-Target Tracking 

Investigator: Robert Kuczewski, TRW, San Diego CA 619/592-3381 

Problem Area: In the absence of continuous surveillance, multiple, possibly crossing, target 
tracks need to be constructed from sparse information. 

Prior Approach: Traditionally, the combinatorial explosion is overcome by heuristic decision 
algorithms which reduce the permissable solution space but also may introduce er- 
ror. An Hopfield network approach was also used, but was dropped when it achieved 
about 20% illegal solutions at best. 

Neural Network Approach: Developed a biologically-inspired track- filtering mechanism based 
on a temporal extension of the boundary contour system such that time continuity of 
moving objects is maximized. A distributed representation, assigning one neuron to 
each node in a spatial grid with a dipole-type receptive field (defining the dynamical 
constraints of the objects and) transfering the influence of neighboring positions, 
leads to a fully parallel cellular automata-type approach (interpolative probability 
field, IPF). 

Status: Complete simulation system operational. 

Results: Many track scenarios have been simulated; tracks stabilize in as little as five consec- 
utive time frames. 

Future Plans: The IPF filter needs to be integrated with a higher- level cognitive structure (as, 
e.g., Grossberg's masking field or adaptive resonance). 

Comments: A fundamentally parallel approach which is independent of the number of as- 
signed tracks since the individual processing elements completely span the covered 
space. Object constraints are fully expressed in the functional form of the probabil- 
ity distribution for the receptive field. 

Conclusions: Approach leads naturally to a unified two-step solution of multi-target tracking 
where filtering (object constraints) and correlation (object recognition) form a self- 
consistent, mutually reinforcing, resonant structure. 
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RAD-5: Neural Network Radar Signal Processor for IFF 

Investigator: Fred Weingard, Booz-Allen, Washington, DC 703/769-7782 

Problem Area: Need an adaptible classifier allowing new patterns to be classified as the threat 
environment changes. 

Prior Approach: Compete with AOSR-96 radar. 

Neural Network Approach: Consider seven radar features that map onto a Grossberg mask- 
ing field (giving a combinatorial set of nodes for each possible configuration of the 
features). Novelty is to be handled by an ART network as an additional logic layer. 
The resulting network should lead to fast learning and novelty classification. 

Status: Program sponsored by Avionics Lab, WPAFB. 

Results: Concept stage. Component simulations need to be done; for this purpose, a computer- 
aided design simulation system is being developed. Once the multi-layered network 
can be constructed on the simulator, the bulk of the one year effort will be spent on 
adjusting the parameters and retrying the network with training and test data. 
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SIG-1: Satellite Classification 

Investigator: Steven Lehar, TEXTRON Defense Systems, MA 617/381-4799 

Problem Area: The recognition of satellites by their Long-Wave Infrared (LWIR) signatures. 

Prior Approach: Human expert. 

Neural Network Approach: Generalized delta rule backpropagation algorithm with 500 in- 
put, 500 hidden, and three output units. 

Status: Preliminary tests complete. This work was supported under the AMOS/MOTIF GFY 
86-90 contract F30602-85-C-0179. 

Results: The system was trained in less than an hour-and-a-half on unprocessed (other than 
range and atmospheric attenuation compensation) LWIR satellite signatures (one- 
dimensional temporal plots of non-spatially- resolved intensities) for three different 
satellites using nine, 10, and 11 distinct signature examples, respectively. Blind tests 
with two signatures for each satellite yielded six out of six correct classifications 
with over 90% certainty on the first trial, and five out of six correct on a second trial 
with different signatures withheld for the blind test. 

Future Plans: Conduct more extensive tests on larger database, optimize performance by 
varying system parameters, investigate preprocessing feature representations and 
investigate different network algorithms. 

Comments: What was started initially as a pure research program produced a practical and 
much needed analysis tool ready for immediate implementation. This technology 
surpassed all expectations and further study is recommended. 

Conclusions: Neural network algorithms show immediate advantages over existing algorithms 
for certain application areas. 
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SIG-2: Removing Random Noise from EKG Signals 

Investigator: Douglas Palmer, HNC, San Diego CA 619/546-8877 

Problem Area: Train a backpropagation network on a continuous EKG data stream to achive 
a low-noise waveform estimate from the noisy input data. 

Prior Approach: To compare the neural network performance, a finite impulse response (FIR) 
filter with 40 adaptive taps was trained using the same training set as for the back- 
propagation network. 

Neural Network Approach: A moving window frame is formed from the last 40 samples of 
the input, each consecutive sample being 200 /is long; hence, the network looks 
at about 1/5 of the heartbeat period at any one time. A fully-connected three-layer 
network with (40, 10, one) units was used; the single output unit is trained to give the 
noise-free waveform prediction for the present sample time. For supervised training, 
the same waveform is presented to the neural network with and without artificially 
added noise. 

Status: Finished demonstration program. 

Results: The neural network showed higher fidelity than the FIR filter approach, even for 
waveforms for which it had not been trained. 

Comments: It is not clear whether the neural network has "learned" the shape of the EKG 
spike and is able to reproduce this low-noise spike at the appropiate time. 

Conclusions: The backpropagation network implements a nonlinear filter and can change its 
frequency response dependent on the input signal; this property allows many filter- 
ing tasks that are impossible to perform with linear filters. 
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ROB-1: CMAC: The Cerebellar Model Arithmetic Computer - A Neural Network Robot Control 
System 

Investigator: James S. Albus, National Bureau of Standards, Gaithersburg MD 301/975-3418 

Problem Area: An adaptive learning neural network for sensory- interactive robot control. 

Prior Approaches: 

• In neural networks: Perceptron, Adeline. 

• In brain modeling: Marr-Albus theory of cerebellum. 

• In servo control: State-space adaptive control. 

Neural Network Approach: CMAC is a feedforward mapping network, with fast response 
times, which utilizes a distributed input representation by mapping the input state 
vector into a lOOx higher-dimensional space. Weights are adjusted by error cor- 
rection of the mapped variables. Learning by teaching a desired trajectory leads 
to topological generalization. Only a few training samples are needed to support a 
smoothly varying control or decision surface. CMACs can be hierarchically chained 
allowing high-level to low-level command decomposition. 

Status: Original work completed and published in 1975. Current work under way at Univer- 
sity of New Hampshire for self-learning of feedforward control for robot dynamics 
[Thomas Miller]. Proof of convergence of training algorithm at Cranfield [P. C. 
Parks]. 

Results: Looks very good for learning sensory-interactive tasks and for learning dynamic sys- 
tem parameters. Needs to be embedded in larger control system architecture to be 
useful. [See also V. Jennings: ROB-5, p. 168.] 

Future Plans: Apply to high-performance, dynamically-complex robot control problems, such 
as manipulator force/stiffness control, or driving high-speed land vehicles. 

Conclusions: CMAC may allow programming by teaching of complex sensory-interactive 
tasks. This could have significant impact on software development for advanced 
robotic applications. 
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ROB-2: Control Systems that Learn 

Investigator: Dr. Richard Elsley, Rockwell International Science Center, Thousand Oaks CA 
805/373-4155 

Problem Area: Control of nonlinear systems that have unknown, computationally intractable, 
or time-varying properties. 

Prior Approach: Explicit calculation of inverse kinematics/dynamics; adaptive control. 

Neural Network Approach: A controller architecture based on a backpropagation neural net- 
work that learns to control the system, beginning with no knowledge of system prop- 
erties and using no external teacher. Uses inverse Jacobian formulation. 

Status: Simulation of a robot learning to reach for objects it can see (i.e., kinematic control) 
beginning with no knowledge of what effect commands to its arm joints will have 
and receiving no direct feedback on the success of individual joint commands. 

Results: After training, robot will reach goal object with arbitrary accuracy. A single presen- 
tation of about 100 randomly chosen goal objects is sufficient for training. After 
training, changing the system, cutting synapses, etc., is followed by releaming. 

Future Plans: Extend to dynamic control, flexible robots with variable loading, cooperating 
robots, other systems. 
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ROB-3: Parallel Distributed Control of Robotic Systems 

Investigator: Jack Gelfand, David Sarnoff Research Center, SRI, Princeton NJ 609/734-3098 

Problem Area: Present commercial hardware cannot do realtime inverse kinematics, and dy- 
namics for force and position control. 

Prior Approach: Conventional methods provide precision and speed for low-degree-of-freedom 
manipulator in a structured environment. 

Neural Network Approach: Combine distributed processing of reflexive control strategies 
with high-level hierarchical control for execution of complex arm movements; de- 
sign strategies inspired by biological control systems which are studied and simu- 
lated in concurrent efforts. 

Status: On-going multi-disciplinary research effort. 

Results: Computer simulations of a multi-joint "ball-throwing" action with adaptive learning. 

Future Plans: Implementation of control strategies on custom robot arm hardware. Plans to 
build mechanical systems and compare them with experimental data from motor 
physiology. 

Conclusions: Engineering efforts inspired by biology will lead to effective and efficient con- 
trol strategies for complex robotic systems. 
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ROB-4: Tool-use in Biological and Artificial Systems 

Investigator: Neville Hogan, MIT, Cambridge MA 617/253-2277 

Problem Area: Sensory guided control of artificial manipulator arms without control-loop- 
induced instabilities. 

Prior Approach: Conventional closed-loop control leading to contact instabilities and sub- 
optimal computation-limited performance. 

Neural Network Approach: Not a neural network approach per se; yet the design philoso- 
phy evolved from studying the performance parameters of animal and human limb 
motion. The central tenet is to control the "impedance" of the mechanical system 
(not the force or motion, as in conventional systems). 

Status: On-going program. 

Results: A video tape was shown of a robot arm designed for extremely high-speed response; 
the arm will move with high speed without colliding with arbitrarily moving obsta- 
cles which are recognized by an optical beacon system. 

Future Plans: Extend applications to control of cooperating articulated, kinematically redun- 
dant robots. 

Conclusions: The system emulates important architectural features of biological systems (e.g., 
local force/velocity relations as impedances) and demonstrates their effectiveness in 
an engineering system specifically designed to exceed biological performance. 

167 



ROB-5: Trainable and Adaptable Neural Networks for Robot Control 

Investigator: Von A. Jennings, Martin Marietta, Baltimore MD 301/682-0892 

Problem Area: Robot control needs to integrate high-level and low- level control with envi- 
ronmental input and feedback for effective action. 

Prior Approach: Current control techniques attempt to model the system explicitly. The dif- 
ficulties of this approach include: computation too slow for realtime control; all 
model parameters are not known. High- level control using state table task decom- 
position needs an unmanageable collection of explicit rules. 

Neural Network Approach: Implemented a CMAC (cerebella model arithmetic computer 
[ROB-1, p. 164]) approach for integrating optical range sensors (uncalibrated and at 
various roughly orthogonal directions) with a six-degree-of-freedom fork-lift robot 
arm. The CMAC is taught by explicit example given by a human operator. 

Status: On-going research effort (internally sponsored). 

Results: Sensory-guided object acquisition demonstration performs the task of picking up a 
pallet; the robot will adapt in real time to positional changes of the pallet. 

Future Plans: Evaluate a fully-connected multi-layer network for control functions presently 
implemented by CMAC. Extend CMAC control structures to the operation of an 
anthropomorphic robot arm and a vehicle obstacle avoidance problem, all taught by 
example of a human operator. 

Comments: This program has been submitted to DARPA for funding. The need to test con- 
trollers on real robot hardware is stressed. 

Conclusions: 

Control functions are stored implicitly without equations or 
rules as stored patterns of weights and connections and ac- 
quired by learning. 

Inherent parallelism of the CMAC approach allows multiple 
control functions to be performed simultaneously in real time. 
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ROB-6: Robot Navigation 

Investigator: Chuck C. Jorgensen, Thomson CSF-pro, Palo Alto CA 415/494-8818 

Problem Area: Use of sonar maps for automonous guidance of a robotic vehicle and antici- 
pation of terrain in new environments. 

Prior Approach: AI techniques. 

Neural Network Approach: Sensor is a phased array of six four- element Polaroid ultrasound 
transmitters; raw data of sonar map are stored in a Hopfield-type neural network with 
sensor data used as recall cues. 

Status: A demonstration unit is operational. 

Results: Robot can build up a 'world map' of a laboratory environment with simple obstacles 
and plan a navigation path. 

Future Plans: 

1. Apply self-organizing maps to robot path planning and con- 
trol; 

2. Study joint neural network/expert system robotic learning. 

Conclusions: Anticipation of partially learned environments is a key problem in merging local 
and global sensor data for autonomous robotics. Neural networks provide a potential 
solution method. 
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ROB-7: Neural Dynamics of Adaptive Sensory Motor Coordination 

Investigator: Michael Kuperstein, Wellesley College and Neurogen, Wellesley MA 617/739- 
2215 

Problem Area: Design a computational map representation that learns to coordinate a multi- 
joint robot arm and stereo cameras for manipulating novel objects. 

Neural Network Approach: Use of an ordered, highly distributed representation of the input 
variables both for the visual and the motor control system. These distributions can 
be mapped together by an environment-driven, self-consistency requirement; no 
explicit teacher is needed to monitor successful mappings. 

Status: Simulations for a static robot model and for a dynamic one- joint model with viscous 
forces have been completed. 

Results: The error of this self-consistent eye/arm map simulation is 4% of arm's length and 
4 degrees of arc. Presently, this approach is applied to a standard robot arm and 
camera system. 

Future Plans: Develop a payload-independent mapping which also includes dynamical prop- 
erties of a robot arm in motion. 

Comments: The model is actively pursued for its commercial application potential. 

Conclusions: An unsupervised computational mapping model has been developed which re- 
lates favorably to known aspects of equivalent biological systems. 

170 



ROB-8: Teaching an Adaptive Network with Visual Inputs to Balance an Inverted Pendulum 

Investigators: Viral V. Tolat, Bernard Widrow, Stanford U., Stanford CA 415/723-4949 

Problem Area: Demonstrate that a skilled person can teach an adaptive network to make re- 
altime control decisions based on the dynamic analysis of visual input data. 

Prior Approach: Realtime control of an inverted pendulum using quantized state variables as 
inputs was done by Widrow and Smith in 1963. More recently, adaptive network 
control of an inverted pendulum was done by Barto, Sutton, and Anderson, where 
learning was achieved by punishment/reward learning. 

Neural Network Approach: Quantized visual images of the present and recent past positions 
of the cart and pendulum are fed to the adaptive network. Training signals (desired 
responses) are obtained from a skilled person (the teacher). The adaptive network 
learns to recognize the important features of the visual images for purposes of con- 
trol. 

Status: Control of a simulated inverted pendulum (broom-balancer) by an adaptive network 
has been successfully demonstrated using a Macintosh to generate the display and 
to implement the differential equations of the cart and pendulum. 

Results: When training on only 20% of all possible visual input images, 96% of the control 
decisions for the remaining visual input images were correct. With limited training, 
the adaptive network was able to stabilize the pendulum indefinitely in spite of small 
errors (4%) in its decisions. 

Future Plans: New problems and applications are being explored for adaptive network con- 
trol. Emphasis is placed on cases where a human expert is available to teach the 
adaptive controller. By studying enough examples, general concepts will appear 
making it possible to develop a science of trainable expert systems. 

Conclusions: It has been demonstrated that an adaptive network trained by a human expert 
has been able to generalize, from limited training, to successfully control an inverted 
pendulum on a cart. The adaptive network has been able to abstract from visual 
inputs the features (state variables) that were critical for control purposes. It was not 
told what to look for. This work may lead to a new form of man-machine interaction, 
where a person trains the machine rather than programming it. 
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DYN-1: GTE Process Monitor 

Investigator: Richard Sutton, GTE Laboratories, Waltham MA 617/466-4133 

Problem Area: Predict from 100-200 process sensors the yield of a fluorescent bulb process 
line in real time. 

Prior Approach: Weekly batch processing of data off-line. 

Neural Network Approach: On-line neural network weight update (every 15 minutes) using 
a novel temporal-difference learning algorithm. 

Status: Conceptual development. 

Results: System under installation in 1988. 

Future Plans: Move from process monitoring toward adaptive process control. 

Comments: The temporal-difference learning rule offers new applications of neural networks 
for dynamic control problems. 

Conclusions: 

• Efficient, low-memory utilization of large data flow in a non- 
stationary monitor situation. 

• Implicit neural network model of process developed from in- 
cremental weight updates based on partial information. 

• Can be readily compared with conventional methods. 
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BIO-1: Motion Detection in Fly and Machine Vision 

Investigator: Heinrich H. Buelthoff, MIT, Cambridge MA 617/253-0549 

Problem Area: Study biological motion detection in flies as a model system for a high-performance 
visual system. Behavioral studies of the optomotor and fixation response of flies 
have founded a mathematical theory of the orientation behavior of flies. Open- 
loop studies of the optomotor behavior in a "fly-flight-simulator" can be well ex- 
plained by a movement detector model based on multiplication of image intensi- 
ties after asymmetric temporal filtering (Correlation-Model; Hassenstein and Re- 
ichardt, 1964). By combining neuropharmacology and electrophysiology, an ef- 
fort was made to distinguish between different neuronal models of this essential 
multiplication-like interaction. By blocking inhibitory interactions with picrotox- 
inin, an antagonist of the inhibitory neurotransmitter GABA, most of the directional 
selectivity of a large-field movement-sensitive neuron (HI- cell) in the third opti- 
cal ganglion of the blowfly Calliphora erythrocephala could be abolished (Schmid 
and Buelthoff, 1988). These modifications are similar to changes in the optomotor 
response of the fruitfly Drosophila melanogaster observed in flight- and locomotion- 
simulators after application of picrotoxinin (Buelthoff and Buelthoff, 1987a,b). These 
results are compatible with inhibitory synaptic interactions at the level of elementary 
movement detection as proposed by Torre and Poggio (1978). 

A new parallel and fast algorithm for computing the optical flow and its implemen- 
tation on the Connection Machine has been described (Buelthoff and Little, 1986; 
Little et ai, 1987). This algorithm is motivated by the study of simple biologi- 
cal motion detection mechanisms as described above. It is based on a regularization 
technique that exploits a simple assumption - that the optical flow is locally uniform. 
It can be easily translated into into the following description: Consider a network of 
elementary motion detectors holding the results of multiplying (or logical "AND- 
ing") image features (intensity or edges) for different displacements. Each detector 
collects a vote indicating support that a patch of surface exists at a certain displace- 
ment in the second image. The final step is to choose the velocity v(x,y) out of a 
finite set of allowed values that has maximum vote (non-maximum-suppression or 
winner-take-all scheme). The corresponding v(x,y) is taken as the velocity of the 
point (x, y). 

Status: On-going research sponsored by ONR. 

Future Plans: Develop ideas based on biological mapping functions (retinotopic and cortical 
mapping) to reduce the two-dimensional search in the voting algorithm to a one- 
dimensional search. This should increase the performance of the voting algorithm 
(four seconds on the Connection Machine) to realtime performance even on standard 
von Neumann architectures. 
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Comments: The study of biological hardware and biological information processing strate- 
gies and much more careful mathematical analysis of neural network algorithms is 
essential for any progress in neural network research. 
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BIO-2: Central Pattern Generator for Locomotion in Lamprey 

Investigator: Avis Cohen, Cornell University, Ithaca NY 607/255-8997 

Problem Area: Investigate experimentally the locomotive pattern generation capabilities of 
the Lamprey spinal cord and compare to model based on a system of coupled limit- 
cycle oscillators. 

Prior Approach: N/A. 

Neural Network Approach: Isolated sections of the spinal cord can be prepared for studies 
in vitro lasting several days; detailed electrical and chemical stimulations can be 
performed and cellular analyses performed. 

Status: Presently funded by AFOSR URI program. 

Results: Model system of a distributed neural network capable of generating coherent non- 
local oscillatory states. 

Comments: Funding of this program was recently curtailed by more than 25%, which elimi- 
nates the planned post-doctoral investigator and will seriously reduce future progress. 
Dr. Cohen feels that across-the-board cuts are inappropiate and inefficient for small 
programs, since a minimum funding threshold exists for continued resarch capabil- 
ity. 

Conclusions: A case where close integration of biological research with mathematical mod- 
eling efforts can produce an engineering decription of the properties of a complex 
system of interacting neuronal circuits. 
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BIO-3: Study of Neuronal Networks Artificially Grown on 
Microelectronic Probe Substrates 

Investigator: Mitch Eggers, MIT/Lincoln Laboratory, Lexington MA 617/981-2664 

Problem Area: Collect simultaneous multi-channel recordings of artifically grown neuronal 
networks of limited size. 

Prior Approach: N/A 
t 

Neural Network Approach: Different types of nerve cells can be grown directly on the pla- 
nar, microelectronic recording substrate. 

Status: A modular electronics cell with sterile nerve cell carrier has been developed and built; 
nerve tissue growth techniques are being developed at MIT. 

Comments: This work is similar in approach to the work reported by G. Gross [BIO-4, p. 177]. 
The distinction lies in the attempt to control the architecture of the living neural 
network (ideally one neuron per electrode) to enable true modeling. 

Conclusions: The collective properties of artificially-selected and -grown nerve cell systems 
will be studied in vitro. 
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BIO-4: Investigating Mammalian Neural Network Modeling Parameters 

Investigator: Guentcr Gross, North Texas State U. Denton TX 817/565-3615 

Problem Area: Study the electrical and chemical characteristics of neuronal network in vitro. 

Prior Approach: Single-cell response measurements of in-vivo or in vitro neurons. 

Neural Network Approach: Develop techniques to grow and prepare two- dimensional, ar- 
tifically grown neuron networks; study these preparations of 100-400 fully iso- 
lated neurons as a function of electrical and chemical stimulation and by selectively 
removing neuron connections with a laser scalpel; 32 electrode channels can be 
recorded simultaneously. 

Status: Operational system, presently upgraded to include 64 channels of high-speed extra- 
cellular recording; any 32 channels can be selected for processing. 

Results: Simultaneous multi-channel recordings of such neuron systems have shown a phar- 
macologically induced change of firing rate. Characteristic burst patterns have been 
manually classified to give a simplified representation on which to look for inter- 
neural correlations. 

Future Plans: Develop techniques to automatically scan the data and find the model parame- 
ters of the neuron network. Correlate circuit structure with circuit electrical activity. 
Stimulate electrically to study signal storage. 

Comments: It will perhaps be necessary to invent a neural network computer to successfully 
relate and interpret the large amount of data generated by these studies. 

Conclusions: Techniques have been developed to study in full detail the temporal dynamics 
of interconnected networks of real neurons. With these techniques, one can study 
network dynamics without a need for specific input and output circuits (i.e., "system 
dynamics"). It is the analog pattern generation and pattern recognition properties of 
neuronal networks that may hold the key to new computer architectures which spe- 
cialize in rapid pattern recognition. Dr. Gross strongly feels that digital architectures 
will not be efficient for rapid pattern recognition and classification. 
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BIO-5: Motion Measurement in the Vertebrate Retina 

Investigator: Norberto Grzywacz, MIT, Cambridge MA 617/253-0545 

Problem Area: At the early vision level, what are the proper models to extract, e.g., motion 
from the visual field? Specifically: 

a) What is the delay mechanism? 

b) What are the interactions involved and where do they occur? 

Prior Approach: Machine vision techniques. 

Neural Network Approach: Direct stimulation experiments on rabbit retina. 

Status: Ongoing program. 

Results: 

a) The delay mechanism is the result of excitatory (not sustained) and inhibitory 
(sustained) interaction to give a speed-independent direction- selective cell response; 
cells in a preferred direction, however, are very speed-selective. 

b) Experiments have been performed to distinguish between a multiplicative shunting- 
type model (inhibition shunts excitatory dendrite inputs) and a hyperpolarizing thresholding- 
type model (e.g., hyperpolarization reduces synaptic transmission from amacrine 
cells); the latter model is consistent with the data. 

Comments: A good example of "applied biological science" with the goal to elucidate work- 
ing models of visual information processing in biology. 

Conclusions: 

• The same cells are interconnected to give both direction-sensitive 
and speed-sensitive information. 

• A hyperpolarizing model for the amacrine cells accounts for 
retinal stimulation experiments. 
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BIO-6: Self-Organizing Computational Maps 

Investigator: John Pearson, David Sarnoff Research Center, SRI, Princeton NJ 609/734-2385 

Problem Area: Study the biological organization and theoretical modeling of computational 
maps; a specific problem is the sensory fusion of visual and auditory information in 
the barn owl. 

Prior Approach: N/A 

Neural Network Approach: Defined a competitive, sensor-stimulated, reaction-kinetic model 
for demonstrating adaptive computational map organization. 

Status: On-going program. 

Results: 

• Simulated sensory fusion—automatic registration of visual and 
acoustic receptive fields. 

• Found dynamically stable clustering of receptive fields in a 
computational map model. 

Future Plans: Apply such computational models to real-world engineering problems. 

Comments: This work is based on a fruitful cooperation of biologists, physicists, computer 
and cognitive scientists. 

Conclusions: Preliminary results show that computational maps can self-organize and are sta- 
bilized (and modified) by external sensory input (changes). 
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BIO-7: DARWIN-HI: A Selective Recognition Automaton 

Investigators: Gerald M. Edelman and George N. Reeke, Jr., The Neurosciences Institute, 
New York NY 212/570-7627 

Problem Area: In understanding perception and the higher cognitive capacities of the brain, 
the organization and operating principles of the nervous system are fundamental. 
According to the theory of neuronal group selection, these capacities are thought to 
emerge from epigenetically determined, distributed networks of excitatory and in- 
hibitory nerve cells. Networks are structured into maps and develop adaptive func- 
tionality as the result of interaction with the environment without explicit compu- 
tational or learning algorithms. Adaptation is dynamic and competitive and allows 
the organism to respond continually to changes and novelty in the environment. 

Prior Approach: N/A 

Neural Network Approach: A general-purpose simulator for networks of cells with biolog- 
ically realistic properties has been written. In a typical application, 8 000 neurons 
with 200 000 connections are arranged to form a functional automaton, Darwin HI, 
with integrated units for vision, arm movement, search, and categorization. Dar- 
win III is a "creature" based on biological principles. It has a phenotype, nervous 
system, and behavior. It generates a categorization of nearby objects based on vi- 
sual and tactile cues, and it responds differently to stimuli in different categories 
depending on their adaptive value for it. 

Status: Working code. 

Results: Successful demonstration of visual saccades, arm reaching, and multi-modal catego- 
rization of objects with appropriate behavioral responses. 

Future Plans: Continue development to achieve higher performance and more complex func- 
tions, including behavioral conditioning of the "creature." 
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BIO-8: Spatial-Temporal Coding in Dynamic Models of Brain Function and Potential 
Applications 

Investigator: Gordon Shaw, UC Irvine, Irvine CA 714/856-6620 

Problem Area: Find a workable model to describe the temporal and spacial dynamics of bi- 
ological neuron activities; how does the nervous system encode and process infor- 
mation with these patterns? 

Prior Approach: Some neural network models (e.g., the Hopfield model) neglect such tem- 
poral dependence. 

Neural Network Approach: Rather than starting with individual neurons, the fundamental 
unit of a neural network is postulated as a group of 30-100 tightly-coupled neurons, 
called a Trion; such a collection represents a tri-state device: a background firing 
activity, and activity above or below background. 

Status: On-going research program. 

Results: Computer simulations show that networks of a few Trions give rise to a large variety 
of dynamically stable patterns which can be selected and enhanced by Hebb-type 
learning; a certain structure, a balance of inhibition and excitation, and statistical 
fluctuations are essential in producing stable firing patterns; this work is successfully 
being applied to an interpretation of multi-electrode data from mammalian primary 
visual cortex. 

Future Plans: Three potential applications of the Trion model: 

1. Motor systems - identify the stable patterns with the activa- 
tion patterns necessary for reflexive motions. 

2. Smart sensors - process sensory data as complex signals ex- 
tended in space and time and "resonate" with the Trion states 
for identification. 

3. Integrating (1) and (2) provides an interface for complex sen- 
sory and motor systems. 

Conclusions: Such structured, Trion-like neural networks give rise to synchronous firing pat- 
terns; the spatial-temporal firing patterns are non-factorizable. 
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DEC-1: Optimal Allocation of Active Sensors 

Investigator: George Fusik, TRW, Redondo Beach CA 213/535-0350 

Problem Area: SDI-Optimal allocation of defense assets. 

Prior Approach: 

1. Human decision making. 

2. Knowledge-based systems (AI programs on traditional com- 
puters). 

3. Optimal assignment algorithms executed on traditional com- 
puters. 

Neural Network Approach: Three-layer network with fixed interconnection weights; nega- 
tive feedback from second and third layer into first: used to reduce list of possible 
optimal candidates for "next best to look at with sensor" to one. Interconnection 
weights are determined by neural network emulation on TRW's MARK-HI neu- 
ral network emulator. Overall performance of network is also evaluated with the 
MARK-HI emulator. 

Status: Investigated behavior of neural networks implementing Hopfield's "traveling sales- 
man" approach and a modified Hopfield "traveling salesman" approach (Hopfield 
with simulated annealing) to optimal visitation of targets. Developed current ap- 
proach, which attempts to elicit desired mathematical behavior from the neural net- 
work. 

Results: Hopfield approaches found to work well (not great) but not as well as traditional 
optimal assignment algorithms. The new approach, it is felt, will work better. 

Future Plans: Test out new approach - determine values of all constants in network formulas. 
Develop other approaches, if necessary, and select the best. Develop electro-optic 
neurocomputer to implement selected the selected optimization approach. 

Comments: Real progress depends on funding levels. 

Conclusions: Potential for application of neural networks to optimization problems exists, 
although work needs to be done to find the best approaches (theoretical develop- 
ment). Optical implementation of neural networks is essential for network speed 
and to manage the complex interconnections required. 
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DEC-2: Mortgage Delinquency Prediction 

Investigator: C. L. Scofield, Nestor, Providence RI 401-331-9640 

Problem Area: Risk Analysis. 

Prior Approach: Statistical methods. 

Neural Network Approach: Use of the Nestor Decision Learning System to train neural net- 
works on home mortgage applications classified as Good risks or Bad risks on the 
basis of their performance over a period of 2.5 years. 

Status: Completed. 

Results: Significant reduction of delinquencies compared to performance of human under- 
writers. 

Future Plans: Extension of this work to other risk analysis areas. 

Comments: This application is presented to illustrate the use of the Nestor Decision Learning 
System to Risk Analysis. 

Conclusions: The Nestor Decision Learning System is able to perform the risk analysis more 
systematically than human operators and thereby is able to reduce, in the cases tested 
sofar, undesirable outcomes. 
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DEC-3: Mortgage Loan Evaluator 

Investigator: C. L. Scofield, Nestor, Providence RI 401/331-9640 

Problem Area: Risk analysis. 

Prior Approach: People trained in the art of good underwriting. 

Neural Network Approach: Use the Nestor Decision Learning System of neural networks 
to leam and match the underwriter behavior implicitly contained in a database of 
10000 mortgage applications. The system utilizes several three-layer networks with 
restricted connectivity (RCEs) which are adaptively allocated by a system controller 
that also provides system output to the user through an application-specific user 
interface. 

Status: Operational system. 

Results: The system is configurable from "low-risk" to "high- throughput" mode of operation. 
The neural network model matches the underwriter from 97% to 87% of the time 
when performing simple yes/no decisions in low-risk to high-throughput mode, re- 
spectively. Where the system differs with the human underwriter, its decisions are 
better as judged by actual loan performance. 

Conclusions: The Nestor Decision System offers the following advantages: 

• Automatically trainable multi-level, hierarchical system. 

• Efficient training times for supervised learning. 

• Fully expandable to larger databases without retraining. 
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THE-1: Practical Results from Neural Network Theory 

Investigator: Yaser Abu-Mostafa, CalTech, Pasadena CA 818/356-4842 

Problem Area: Summarize theoretical results pertinent to neural network applications: 

1. What are neural network limitations? 

2. How do neural networks compare with conventional meth- 
ods? 

3. What problems are suitable for neural networks? 

4. How difficult is it to learn? 

5. Are there advantages for analog computations? 

Results: 

(1) What are neural network capabilities? 

(a) Storage: Capacity estimates exist for Hopfield and feedforward networks and 
are relatively low. 

(b) Computational power: Perceptrons can do any linearly-separable decision; a 
fully-connected three-layer network can map any Boolean transformation. 

(2a) "Robustness" of neural networks: there are no general results; 

(2b) "Structured" problems (for which an algorithm exists, such as the traveling 
salesman problem) are not suitable - to solve such an NP-complete problem would 
require an exponentially increasing number of neurons. 

(3) Problems suitable for neural networks are those which cannot be described by 
a short algorithm, such as random and pattern-recognition problems; in such cases, 
the neural networks are "programmed" by example. 

(4) "To learn" means here to define a given I/O mapping; a general mapping is NP- 
complete, therefore prior knowledge and existing structure of the problem need to 
be embedded as useful "hints" via proper choice of representation. 

(5) There exist no theoretical results concerning the advantages of analog computa- 
tions; experimentally, however, analog devices give fast decisions and high accuracy 
when used with feedback. 
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THE-2: Phase-Locking of Neuronal Circuits 

Investigator: Frank C. Hoppensteadt, Michigan State U., East Lansing MI 517/355-4473 

Problem Area: Mathematical methods have been developed to model the frequency-response 
properties of neurons and to show that neural networks can support stable patterns 
of synchronized firing. 

Neural Network Approach: The neuron is decribed by a voltage- controlled oscillator model. 

Status: Ongoing program. 

Results: Synchronization of neuron firing have been modeled in small and large networks of 
neurons. Memory is described by the phase-locked response of a network of such 
oscillors; collective properties such as a, Hebbian learning rule have been demon- 
strated. 

Comments: The main results have been summarized in Dr. Hoppensteadt's book, An In- 
troduction to the Mathematics of Neurons (Cambridge University Press, London, 
1986). 

Conclusions: 

• A model for the frequency-response properties of neurons has 
been developed. 

• A neural network system of such neurons is capable to form 
stable patterns of synchronized firing. 
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THE-3: Random Code Neural Networks 

Investigator: Alexander Jourjine, Analog Intelligence Corp., Cambridge MA 617/524-4858 

Problem Area: Develop a hardware oriented neural network theory, based on distributed bi- 
nary micro-states which correspond macroscopically (i.e., for longer-term time av- 
erages) to analog state variables of the network. Implement learning as minimization 
(at each node of the network) of a disorder functional dependent on the correlations 
within input and internal signals of the node. 

Prior Approach: N/A 

Neural Network Approach: This novel approach considers elemental neurons which receive 
binary pulses as address and information carriers simultaneously via two channels: 
a direct channel and a modulated channel (modulated subject to a certain update 
rule); pulses are transmitted only via the modulated channel: thus the generated mi- 
crostates are a function of average correlations between these microstates and the 
specific update rule for the modulation. Depending on the rule, the macroscopic be- 
havior (long time average) of the system reduces to several common neural network 
models. In effect, the model develops its own 'preprocessor' to recognize the devi- 
ations from randomness inherent in the data without external supervision - learning 
and recognition happen simultaneously. 

Status: On-going research project. 

Results: Analysis of the theory is extensive; small-scale simulations have been run and ana- 
lytic results verified. 

Future Plans: Tie this work directly to applications. 

Comments: Unusual and innovative work. 

Conclusions: A novel model for unsupervised learning has been developed. The neural net- 
work operates as a collection of binary devices which all contribute to represent the 
operational states of the network as analog values; for N neurons only order(N) 
interconnects are needed; only local synchronization of units is needed. 
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THE-4: Image and Object Coding for Data Compression 

Investigator: Albert F. Lawrence, Hughes Aircraft, CA 

Problem Area: Image analysis, signal processing. 

Prior Approach: These mainly involve decomposition of the data into orthogonal series such 
as: (1) Fourier series. Image data is written as Fourier series. Terms whose coef- 
ficients do not exceed a pre-determined level are neglected. (2) Karhunen-Loeve 
transforms. The statistical properties of the data are used to determine a series sim- 
ilar to the principle components. Terms of small norm are neglected. Other ap- 
proaches have exploited the nature of the digitized data as in run-length encoding 
or, more generally, recording only the differences in succeeding terms in a more or 
less continuous series. 

Neural Network Approach: Barnsley and his co-workers at Georgia Tech have shown that 
data can be coded by systems of affine transforms at compression ratios of 10 000 
to 1 or better. The determination of the most efficient representation, however, is 
an enormous computational problem. This problem can be reduced to an explicit 
optimization problem. Such optimization problems can be solved in neural network 
machines by standard methods which have been reported in the literature. Further- 
more, one may emulate the data coding properties of retinal interconnections and 
retina to visual cortex mappings found in nature. These yield interconnect architec- 
tures which give simple realizations of affine transformations. 

Status: Effort is in the early stages of mathematical analysis. Some developmental work has 
been performed toward the specification of architectures. 

Results: Networks embodying exponential or logarithmic point-to- point mappings have been 
shown to yield simple schemes for the calculation of affine transformations on two- 
dimensional data sets. Reduction of the dimensionality of the optimization problem 
to a more manageable level by use of the method of moments has been shown. 

Future Plans: The dimensionality of the problem is still an obstacle. Methods for reducing 
the degree of connectivity required, particularly through hierarchical interconnect 
schemes seem to constitute the most promising approach at present. 

Comments: One of the major obstructions to further progress in neural network theory is the 
lack of a detailed theory of the dynamics of nonlinear systems, particularly as relates 
to computation-like processes. Some information from neurophysiology might give 
some useful hints in this area. Another gap is in the device technology available to 
the researcher. Development of devices, such as Josephson junctions, which operate 
at the quantum level might prove useful here. 

Conclusions: The work here is preliminary. Although neural networks seem to afford a conve- 
nient solution for the interconnect problem, more mathematical analysis is necessary 
to reduce the scale for implementation in present-day technology. 
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THK-5: Generalities about Neural Networks 

Investigator: Robert Rosen, Dalhouse U., Halifax NS 716/473-4055 

Problem Area: A historical and conceptual overview of neural networks and how they relate 
to other fields. 

General Points: 

1. Neural networks are transducers from afferent to efferent. 

2. Neural networks are pattern recognizers and classifiers. 

3. Neural networks are pattern generators. 

4. Neural networks are realizable in other contexts (operon net- 
works, Ising models). 

5. Neural networks are generalizable from dynamical systems 
(which are simple systems). 

6. Neural networks are "informational" networks (complex sys- 
tems) which are infinitely open and cannot be descibed by a 
syntactic desciption. 

Comments: For a more complete account, see "Organisms as Causal Systems which are not 
Mechanisms: An Essay into the Nature of Complexity," in Theoretical Biology and 
Complexity, R. Rosen, ed., Academic Press, New York 1985, p. 165-203. 

Conclusions: Complex systems are "open" in the sense that a complete syntactic description 
cannot be given. Furthermore, complex systems do not allow a distinction between 
hardware and software. The fundamental tenet is that living systems in biology 
present vivid examples of complex systems, as opposed to simple systems; only the 
latter can be fully defined by a formal description or algorithm. 
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SUR-1: Neural Network Overview on the ESPRIT-II Program 

Investigator: Bernard Angeniol, Thomson CSF, France 

Problem Area: Multi-national effort to develop and apply neural network technology primar- 
ily for image processing and speech recognition. 

Neural Network Approach: Both hardware and software development of a neural network 
simulator and standard language is planned. 

Status: Phase I funding of about M$ 15 is expected during spring of 1988 with about 70% 
probability. 

Results: Various demonstrations have been completed; specifically, a solution to the 'Travel- 
ing Salesman Problem' was highlighted using a newly developed form of the self- 
organizing map for a 1 000-city tour. 

Future Plans: Phase II funding is planned at about M$ 45. 

Comments: Work is to be performed by engineering departments of universities and industry. 

Conclusions: Program with a broad scope; specific program goals are hardware-oriented. 

SUR-2: SDI Discrimination Problem 

Investigator: Mike Cain, Booz-Allen, Washington, DC 703/769-7782 

Problem Area: Overview on multi-sensors (passive, active, interactive) for specific target 
identification. Since signatures change as a function of time adaptive processing 
techniques are needed; where could neural networks be useful? 

Approach: AI most suitable for data fusion and clustering. 

Neural Network Approach: Neural networks potentially applicable for optimization (simu- 
lated anealing), coordinate transformations (perceptron), and feature detection (Gross- 
berg). 
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SUR-3: Neural Network Applications at Hughes Ground Systems Group 

Investigator: Patrick F. Castelaz, Hughes Command and Control Division, Fullerton CA 714/732- 
8622 

Problem Area: Neural networks are suitable for optimization and learning problems; Dr. Caste- 
laz presented a list of 12 small-scale demonstrations which show promise for future 
system applications. Here, these problems will be summarized briefly: 

Problem 1: De-ghosting (both digital (d) and analog (a)) - radar triangulation from several 
emitters without respective range information will give false target locations due to 
beam overlap. 

Prior Approach: 36 actual targets result in 4 070 ghosts; standard linear program- 
ming techniques would require long solution times (years!). 

Neural       Network    (Class: optimization) Special-design relaxation network with 
Approach: cost function such that overlap is minimized. 

Status: Simulation results (d: design checked, a: qualitative). 

Results: Neural network settles in milliseconds on a solution: within 1- 
10 mile radius 55%-100% of potential targets correctly identi- 
fied. 

Comments: Approach is tested only to 40 targets. 

Problem 2: Plot/Track Correlation (dl, a) — Sort out conflicting information on multiple 
tracks. 

Neural       Network    (Class: optimization) Relaxation processor. 
Approach: 

Status: Simulation results (dl: design checked, a: qualitative). 

Results: Tested to 16 tracks. 

Problem 3: Plot/Track Correlation (d2) 

Neural       Network    (Class: analogue) Use a cellular automata to construct an ana- 
Approach: logue micromodel of problem. 

Status: Proof-of-concept hardware. 

Problem 4: Analog Coordinate Transform — Build a hardware table look-up. 

Neural       Network    (Class: analogue) use a cellular automata to perform, e.g., a 
Approach: (i, y) •«=>• (9, r) transformation. 

Status: Proof-of-concept hardware. 

Comments: Expect submicrosecond transform, versus best (CORDIC) re- 
sponse of 20-40 /js. 
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SUR-3 — continued 

Problem 5: Infrared Tank Discrimination and Centroid Finding - Smart shell: during half- 
rotation (1 /is) discriminate and locate target; 16x 16 single-bit data. 

Neural       Network    Use the temporal dynamics of a cellular- automata-type thin- 
Approach: ning algorithm, gated at fixed time delay (for a given height 

above target), to reduce to a single pixel (the centroid), if, and 
only if, a target was present in the initial picture. 

Status: Simulation results and VLSI chip mask. 

Problem 6:  1-D Signal Classification of a General, Arbitrary Pulse Shape 

Status: Qualitative simulation results. 

Problem 7:  1-D Signal Classification of a Continuous-Wave Sinusoid - - Detection and clas- 
sification of two signals within a waveform. 

Neural       Network    32 neurons, 32 examples of each class presented 300 x. 
Approach: 

Status: Quantitative simulation results. 

Results: 80-90% correct classification. 

Problem 8: Infrared Point Source Discrimination and Multi-target Tracking — (class: one- 
dimensional and two-dimensional pattern recognition and optimization) 

Status: Contract with USASDC since October 1987. 
Future Plans: Follow-on proof-of-concept hardware. 

Problem 9: Speaker ID from Speech — (class: 1-D signal class.) Speaker identification using 
time-amplitude waveform. 

Neural       Network    Extended backpropagation. 
Approach: 

Status: Quantitative simulation results. 

Results: two speakers could be reliably distinguished by pronouncing 
the word "Hughes". 
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SUR-3 — continued 

Problem 10: Doppler Radar Target Classification 

Problem Area: 

Neural       Network 
Approach: 

Status: 

Results: 
Comments: 

(class: two-dimensional signal class.) 

Tried  a  (16,   16,   16)  backpropagation  network  success- 
fully.  'Time' encoded into signal as additional channel (two- 
dimensional representation); 48-neuron network trained on 32 
exemplars from each of four classes. 

Quantitative simulation results. 

92% correct classification. 
One of the applications in maturest development state. 

Problem 11: Preferential Defense — (class: n-D pattern class.) Fire control problem. 

Neural       Network    Backpropagation network:   22-neuron network, four-neuron 
Approach: output. 

Status: Quantitative simulation results. 

Results: Achieved 92% intercept rate: single threat, single target, multi- 
ple (fixed) weapons. 

Comments: One of the applications in maturest development state; video 
demonstration. 

Problem 12: Backpropagation Implementation Issues — What are the component tolerances 
needed to achieve satisfactory performance from a feedforward network? 

Neural       Network    Backpropagation networks. 
Approach: 

Status: Quantitative simulation results. 

Results: Resistor values of 10% accuracy are OK, graceful degradation 
beyond 10%. 

Comments: One of the applications in maturest development state. 
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SUR-3 — continued 

General Comments: Dr. Castelaz indicates that in the present state of development all these 
applications are of small size; how to scale up to realistic systems is not always 
clear; one possibility might be to segment the complete problem into chunks small 
enough for processing by dedicated small-scale hardware. 

Conclusions: Multiple applications of optimization and learning/pattern recognition networks 
to real problems have been addressed. Both quantitative and qualitative results have 
been reported. Representation and implementation issues have also been addressed. 
Current research is very focused on scaling and implementation issues. Extensions 
of backpropagation approaches to decrease size are being investigated. 
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SUR-4: Modern Data Storage and Retrieval Systems 

Investigator: Ching-chih Chen, Simmons College, Boston MA 617/738-2224 

Problem Area: Large-scale information processing in centralized databases has the problem 
of most-suitable database selection for a given inquiry; present so-called "gateway 
programs" are being developed based on simple Al-like decision systems. Large 
databases, lexical and pictorial, can now be stored and distributed on optical disk; 
a current example is a detailed archeological record related to the First Emperor of 
China, specifically the terracotta figures of warriors and horses at Xian, including 
high-resolution digital images. To use this type of information effectively, efficient 
feature extraction algorithms need to be developed; currently, these algorithms are 
rule-based - but neural network approaches may be more suitable. 

Status: On-going research program. 

Future Plans: More work will be devoted to electronic digital imaging and the computer vi- 
sual input and output in terms of retrieval. 

Conclusions: The dynamic development of various hybrid new technologies (such as optical 
and microcomputer) have great potential for large-scale multi-media data and infor- 
mation storage, retrieval, and utilization. It creates new exciting research areas for 
neural network approaches as well. 

SUR-5: Venture Capital Financing of a Neural Network Company 

Investigator: Oliver D. Curme, Battery Ventures, L.P., Boston MA 617/367-1011 

Problem Area: How will venture capital support neural network startup companies? 

Status: Battery Ventures currently supports Hecht-Nielsen Corp. (HNC), San Diego, CA. 

Future Plans: Battery Ventures does not finance research; a company must have a demon- 
stratable product in an identifiable niche position in order to attract financial sup- 
port. Financing is primarily intended for the purpose of broad-based marketing of 
products with short-term profit prospects. 

Comments: Break-even for Battery Ventures is about one in three commitments; payoff is 
expected within five years. 

Conclusions: With respect to the neural network field, Mr. Curme shares an outlook very 
consistent with Robert Hecht-Nielsen of HNC: substantial applications of neural 
network in many areas are imminent; short-term profit potential exists in marketing 
neural network simulation tools and know-how. 
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SUR-6: Defense Applications of Neurocomputers 

Interview: Robert Hecht-Nielsen, HNC, San Diego CA 619/546-8877 

General Comments: 

1. Neural network technology is a weak, embryonic field; over- 
promising, 'hype', and anthropomorphism need to be avoided. 

2. Neural network technology should be biology-inspired, but 
not constrained to model nature explicitly. 

3. HNC recognizes that "neural networks are a solution looking 
for a problem" and markets the expertise and hardware to train 
domain experts in neural network methods and capabilities in 
the hope of broadening the applications potential. 

4. At present, there are no HNC-installed, commercial neural 
network applications; a promising financial application, presently 
under development by HNC, is expected to achieve market 
maturity in two-to-five years. 

5. DOD applications are more difficult: "DARPA should com- 
mit to long- term funding." Initial demonstrations should be 
modest, contractor- proposed, and closely refereed. For mil- 
itary systems, development tools are needed - i.e., standard 
languages and standard graphics interfaces. 

Problem 1: Doppler Radar Return Classifier — classify targets by internal motion-induced 
chirp signatures imposed on a quasi-cw radar pulse; dynamic time-warping and 
matched filter operation is needed. 

Prior Approach: De-modulate the signal to the audio band for human interpreta- 
tion. 

Neural       Network    Chop 0.5-s pulses into 40 slices, compute the spectrum for each 
Approach: slice, and propagate through an avalanche network; parallel 

matched filters sort out the target classes. 

Status: Conceptual stage. 

Future Plans: TRW's Mark-IV could implement 10000 matched filters run- 
ning almost in real time. With a small group (four people for 
about one year), one could build an operational demonstration 
with perhaps 20 targets. 

Comments: Ambiguities exist due to velocity and angle of target; also, such 
a system would have to deal with battlefield noise. 
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SUR-6 — continued 

Problem 2: Signal-from-Signal Extraction (Cocktail Party Problem) - pick and track a specific 
signal wave form among many: "How to focus attention?" 

Prior Approach: 

Neural       Network 
Approach: 

Status: 

Comments: 

FM-carrier tracking. 

Fukushima's neocognitron and Grossberg's ART solve some- 
what similar problems in the visual domain; representation is a 
sliced and Fourier-transformed spatio-temporal version of the 
input signal ("atomic spatio-temporal sequences"); there must 
be variable-gain stages which are set by the system at a higher 
level. 
No clear concepts developed. 

It may be difficult to"tune-up" such a system initially. 

Other Problems: 

• Sonar target identification, 

• Image processing, and 

• Noise reduction. 
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SUR-7: Laser Radar Data Survey 

Investigator: Jim Leonard, WPAFB, Dayton, OH 

Problem Area: CO2 laser radar with Doppler processing, as well as infrared and visible infor- 
mation require sensor fusion; such systems allow feature detection, correction, and 
identification; they give three- dimensional information directly and show promise 
for model matching. 

Conclusions: Powerful vision algorithms are needed to render all the information inherent in 
such multi-sensors useful. 

SUR-8: Future Command and Control Systems 

Investigator: Orin E. Marvel, Hughes Aircraft, Fullerton CA 714/732-5869 

Problem Area: BMC3 (battle management, command, control, and communication) is a very 
complex problem, constrained in addition by such requirements as functioning with 
existing NATO equipment. Duties are roughly partitioned as C3 for humans and 
BM for computers. The key to a war in the future are: short time lines, very high 
speeds, large data flow, and a large number of simultaneous engagements. 

Prior Approach: Standard algorithms are fast enough to perform decisions; most are done 
manually using O.R. techniques. 

Neural Network Approach: Required optimization problems (correlation, strategy, assign- 
ments) are too large for current state-of-the- art technology and may be solvable by 
neural network approaches. 

Future Plans: 

1. Resource optimization; 

2. Weapon allocation; 

3. Battle Management Associate; 

4. Intelligence Processing. 

Conclusions: Requirements suggest that a large automated engagement like SDI cannot be 
accomplished without neural networks. 
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SUR-9: Custom Analog VLSI Chip Development for Vision and Speech 

Investigator: Carver Mead, CalTech, Pasadena CA 818/356-6568 

Problem Area: Special-purpose analog chips that mimic closely processing functions present 
in a biological retina or cochlea are under development; such chips are deemed 
essential components of an automonous vision or speech recognition system. 

Approach: The central tenet of Dr. Mead's design philosophy is to merge knowledge about 
the biological system (and a full appreciation of its detailed structure and function) 
with an understanding of how to implement the essential features in analog hardware 
(emulating the biological with equivalent electronic functions). 

Status: On-going project with about k$400 per year. 

Results: See "A Silicon Model of Early Visual Processing", Neural Networks, 1, Nr.l, 91-99 
(1988). 

Future Plans: Work on a vision segmentation chip (in collaboration with C. Koch) may re- 
quire another five years of development; in 10 years a chip set for a complete vision 
system may have been developed. 

Comments: MOSIS is being used for all chip fabrication; DARPA should be congratulated 
for its work in establishing MOSIS. 
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SI K-10: Neural Network Applications at TRW 

Investigator: Mike Myers, Robert Kuczewski, TRW, San Diego CA 619/592-3381 

Problem Area: The dedicated team at TRW has developed a flexible and powerful neural 
network simulator and has addressed a wide range of potential application areas; a 
brief outline of these applications follows: 

Problem 1: Airplane Identification 

Neural       Network    Present raw spatial image to neural network. Use neural net- 
Approach: work to center, take polar and Fourier transforms and classify 

using a three-layer trained network. 

Results: Simulations for three different airplane shapes completed. 

Future Plans: Expand to classify all aspect angles, use for trajectory extrapo- 
lations. 

Conclusions: Needs considerable more work to use in real systems, but the 
basic approach has been shown to work well. 

Problem 2: Edge Detection 

Neural       Network    On-center/off-surround two-dimensional differentiation. 
Approach: 

Status: Used same approach for temporal image change detection. 

Problem 3: Recognize Doppler Modulation of Radar Returns from Helicopters 

Prior Approach: Directly demodulate Radar returns to audio for recognition by 
human operators. 

Neural       Network 2 500 neuron spectrogram map + 50-neuron Fourier transform 
Approach: + 100-neuron classifier + 1 000-neuron image outstar. 

Status: Demo complete. 

Results: Eight helicopters distinguished from simulated data. 

Future Plans: Results will be applied in smart weapons programs. 
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SUR-10 — continued 

Problem 4: Threat Maneuver Detection — Recognize specific time sequences of airplane 
banking angles to anticipate, e.g., evasive maneuvers; important for "smart" mis- 
sile guidance. 

Prior Approach: None. 

Neural       Network Spatio-temporal correlation of detected aspect angles using 
Approach: prior neural network. 

Status: Small demo built and working. 

Results: Not tested extensively. 

Future Plans: Will pursue if funding source exists. 

Comments: Build from spatio-temporal information a model to predict fu- 
ture actions; important for dynamic system modeling. 

Problem 5: On-Line Hand-Written Character Recognition 

Neural       Network    Four-dimensional input (x,y,x,y), train BEP. 
Approach: 

Results: Works on characters independent of size, needs more training 
examples. 

Conclusions: This demo was completed in one morning, and showed the 
power of the emulator design tool MARK III-1. 
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SUR-10 — continued 

Problem 6: Radar Emitter Identification from Single Pulses - Identify radar emitter from char- 
acteristic micro-features present in the pulses; use real pulse samples from three 
different sources: two emitters, one recorded six months apart. 

Prior Approach: Classified. 

Neural       Network    Fully-connected three-layer network with (500,16, three) cells; 
Approach: out of a 1 000-pulse data set, 200 pulses were presented 5x as 

training set. 

Results: 98% correct identification between the two different emitters; 
90% correct between same emitter recorded at different times. 

Future Plans: This will be pursued on IR&D. 

Comments: While an impressive demonstration, it is not clear if the simple 
backpropagation neural networks could achieve equally good 
results with a more realistic number of possible emitters. 

Problem 7: On-Line Threat Assessment — neural networks applied to cognitive processing: 
build up an internal "world model" for threat assessment and effective force deploy- 
ment. 

Neural       Network    Threats and targets are modeled as repulsive and attractive force 
Approach: fields, respectively; the optimal path sequence follows from the 

resulting equation of motion. 

Status: On-going program sponsored by AFWAL AAAL. 

Results: Final demo given 1/88. 

Future Plans: Use as "inner model" for threat response evaluation and plan- 
ning. 
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SUR-10 — continued 

Problem 8: Backward-Error Propagation as a Self-organizational Structure — Apply back- 
propagation to an unsupervised learning situation where the input pattern is equated 
to the output pattern with the goal to achieve stable hidden layers of significantly 
lower dimensionality. 

Neural       Network    Five-layer network with (255, 16, three, 16, 255) nodes. 
Approach: 

Status: Network was trained and tested on 255-dimension image data. 

Results: Clustered in three dimensions. 
Future Plans: Bandwidth reduction. 
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SUR-11: Artificial Adaptive Neural Network Systems 

Investigator: Tom Ryan, SAIC, Tucson AZ 

Problem Area: Description of several current projects which can be sim- 
ulated with the SAIC-developed GINNI software simulator 
and also Connection Machine applications. 

Prior Approach: Varies with project. 

Neural Network Approach: 

1. In an Al-like system use, the ART I model 
as a content-addressable memory. 

2. Development of a hierarchical model for 
machine vision. 

3. Use of a Kohonen-type neural network 
for vector quantization of visual infor- 
mation. 

4. Application of a multi-layer backprop- 
agation networks to image processing; 
primary appeal is that the system can be 
taught by data - explicit knowledge en- 
gineering is not needed. 

5. The following four applications use a 
Connection Machine CM-1: 

(a) Geman/Geman-type process- 
ing for image segmentation; 

(b) Cellular automata for broad 
area search with 5 x 5 or 7 x 7 
pixel window; 

(c) Hopfield-type associative mem- 
ory for feature detection; 

(d) Parallel VQ training. 

Status: On-going programs. 

Future Plans: Focus on machine vision applications. 

Conclusions: Neural network technology can be applied directly in low- 
level signal processing/pattern recognition applications. More 
work is needed on complexity, scaling and invariance issues. 
We should take as many cues as possible from the biologi- 
cal studies. The application of neural networks to symbolic 
processing is on shaky ground but deserves adequate funding. 
Knowledge/facts representation is a major concern. 
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SUR-12: Cellular Automata as Neural Networks: Pattern Recognition and 
Tracking 

Investigator: Tommaso Toffoli, MIT, Cambridge MA 617/253-3194 

Problem Area: How to segment texture in an image. 

Prior Approach: Computer vision techniques developed in AI. 

Neural Network Approach: Use a cellular automata network (CAN) 
to find the large-scale macrofeatures emerging from specific 
microscopic update rules; whenever these large-scale features 
correspond to similar features in the image, the CAN can find 
them in noisy input images. 

Status: A dedicated CAN-board for the IBM PC has been developed and 
is commercially available with fast realtime video update. 

Results: Several kinds of macrofeatures emerging from micro-rules were 
demonstrated; while some specific results exist, no complete 
and general theory existes to predict the full relationship be- 
tween macro- features and micro-rules and vice versa. 

Future Plans: A high performance CAN (512 modules, each with 16 
planes of 1 024 x 1 024 points) is in development. 

Conclusions: Whenever a process is fully described by local interac- 
tions, it can be efficiently simulated using a CAN. 
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SUR-13: Applications of Neural Networks: Review of Honeywell's Activities 

Speaker: Jim White, Honeywell Systems Research Center, Minneapolis 
MN 612/782-7355 

Problem Area: Honeywell has taken a careful look at neural network 
technology from both a software (algorithmic) and a hardware 
perspective. An integration of neural networks, expert sys- 
tems, and numeric processors is needed. 

Problem 1: Feature Learning in Simple Sentences 

Neural Network    Multi-layer backpropagation networks. 
Approach: 

Results: Network learned certain domain concepts; generalization was 
observed; shortcomings were identified; and alternatives sug- 
gested. 

Problem 2: Genetic Classifier System for Acoustic Signal Recognition 

Approach: A rule-based system for recognizing sequences of acoustic seg- 
ments. 

Results: Simplified problems were handled successfully using a credit as- 
signment algorithm. 

Problem 3:  Semantic Control of Neural Network Associative Search 

Neural Network    Proprietary mechanism for establishing an externally supplied, 
Approach: context-sensitive control of associative search. 

Results: Basic operation demonstrated. 

Problem 4: Digital Associative Content-addressed Memory 

Neural Network    Off-the-shelf RAM combined with custom ICs to implement a 
Approach: high-speed content adressable memory. 

Results: Design analysis and simulations completed. 

Problem 5: Neural Network Coprocessor for Hybrid Computing Sys- 
tem 

Neural Network    Neural cluster concept and basic architecture has been defined. 
Approach: 

Results: Key data and control representation issues were identified. 
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SI R-13 — continued 

Future Plans: Honeywell sees a symbiosis of conventional and neural 
network systems: neural networks of different types will co- 
operate in solving a problem from different aspects. 

Comments: Honeywell knows how to reduce some of its neural network 
work to silicon, but believes it is, currently, premature. 

Conclusions: Neural networks are useful for front end applications to 
process raw data; neural networks will also be useful as back 
ends for generalization to reduce the rule-explosion problem. 
For successful neural network applications, the right data and 
knowledge representations are crucial. Algorithmic and sym- 
bolic processing elements will be combined in future systems. 
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L.3   QUESTIONNAIRE TO FORECAST NEURAL NETWORK APPLICA- 
TIONS DURING THE NEXT QUARTER CENTURY 

I.J.I    Introduction 

One of the major goals of the Neural Network Study was to identify application areas 
to which a national neural network program could make meaningful contributions. 
For concreteness, a time interval of 25 years was chosen. As part of this effort, a 
questionnaire was designed to show possible options and alternatives, referenced to 
such questions as "What will be?" and "What is possible?" Special attention was 
given to identifying the technology barriers and the required breakthroughs. 

For purposes of designing the questionnaire, it was necessary to standardize the 
questions that would be ask of various experts so that the forecasts would have a 
common foundation. The questions were grouped into two main categories: 

• "What will be?" was asked as an alternative to such ques- 
tions as "What is probable?" or "What is 80% probable?" etc. 
Implicit in the question "What will be?" is a very high likeli- 
hood that the capability will indeed be achieved. 

• "What is possible?" was asked as a question generally in- 
tended to be unconstrained by consideration of funding limi- 
tations. Having determined "what is possible," the expert was 
asked to identify the controlling factors. 

Next, it was desirable to quantify, using a histogram, the responses so that the results 
of the questioning could be easily aggregated and summarized. It was assumed that 
there would be about 25 to 50 expert respondents; there were, in fact, 40 responses. 
This suggests that a histogram should have about five categories as a balance be- 
tween resolution and accuracy. 

All the inputs to this questionnaire were used in some fashion. It is only natural 
that conflicting forecasts would be made and, for that reason - as well as the need 
to aggregate many of the forecasts to a higher level - final accountability for the 
actual forecasts rests not with the questionnaire's respondents but with the Neural 
Network Study's System Applications Panel. For reference, the raw histograms are 
given to enable independent conclusions to be drawn. Some respondents answered 
more than once per question or not at all. Multiple answers were counted equally. 
For these reasons the total number of responses varies from question to question. 
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L.3.2    Results 

What Will Be? 

With $10M to $100M per year (63%) (Figure L-1) for five years (55%) (Figure L-2), 
neural networks are promising for generating new applications (88%) (Figure L-3) 
and (Figure L-4). The applications will be in robotics (43%) and man-machine in- 
terfaces (43%) (Figure L-5) primarily in classification/recognition (49%), sensors 
(21%), and motion control (18%) (Figure L-6). These applications will exhibit in- 
creased information throughput (33%) and quicker responses (27%) - i.e., be faster 
systems (Figure L-7). Moreover, about one half of the neural network aplications are 
expected to replace existing technologies (Figure L-8). There is a significant civilian 
fallout to neural network work (55%) (Figure L-9), with the biggest challenge being 
product development (65%) - not manufacturing, marketing or competition (Fig- 
ure L-10). Finally, neural network products are expected to create social changes 
(65%) (Figure L-11). 

What is Possible? 

There are fundamental limits on neural network technology remaining to be discov- 
ered (82%) (Figure L-12). The main problem areas are a better mathematical theory 
of neural networks (42%) and design rules for complex neural networks (27%); 
validating a theory or transferring known theories to practice do not appear to be as 
important (Figure L-13). There may be a psychology developed for neural networks 
(42%) (Figure L-14), but its application to human psychology in the foreseeable fu- 
ture is debatable (Figure L-15). In any case, neural networks are not expected to 
approach the capability of the human mind except for specialized functions (66%) 
(Figure L-16). Finally, on a purely speculative note, conjectured phenomena of the 
human mind, such as psychokinesis, are very unlikely (85%) (Figure L-17). 
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AT THIS TIME AN APPROPRIATE LEVEL OF 
GOVERNMENT SUPPORT PER  YEAR TO  NN  APPLICATIONS  IS: 

MILLIONS 

Figure L-l.    Level of Support Appropiate for Neural Network Applications Research. 

NN WILL BE MAJOR TECHNOLOGY IN: 

IN 

O) 

O 

NEVER I 
Figure L-2.    Development Time of Neural Networks as a Major Technology. 
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NN IS VERY PROMISING FOR GENERATING NEW APPLICATIONS 

COMPLETELY AGREE NEUTRAL MILDLY STRONGLY 
AGREE w/RESERV. DISAGREE DISAGREE 

Figure L-3.    Potential of Neural Networks for Novel Applications. 

THE MOST PROMISING  NN APPLICATIONS ARE IN: 

ROBOTICS SPACE MEDICINE COMMUNI-   MAN-MACHINE 
PLATFORMS CATIONS        INTERFACES 

OTHER 

Figure L-4.    Potential of Neural Networks for Enhanced System Performance. 
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THERE ARE SEVERAL APPLICATION AREAS 
WHERE NN COULD PRODUCE A BREAKTHROUGH 

COMPLETELY AGREE NEUTRAL MILDLY STRONGLY 
AGREE W/RESERV. DISAGREE DISAGREE 

Figure L-5.    Promising Application Areas for Neural Networks. 

THE  SUBSYSTEM AREA WHICH  OFFERS THE  BEST PROMISE 
FOR  NN  IMPACT IN THE  NEXT 25 YEARS IS: 

SENSORS       STIMULUS        MOTION CLASS'N    HIGH-LEVEL    MEANING 
& RESPONSE       CONTROL & DECISON & 

RECEPTORS RECOG. MAKING      COGNITION 

Figure L-6.    Promising Application Areas for Neural Network Subsystems. 
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NN APPLICATIONS TO IMPROVE PERFORMANCE 
ARE MOST PROMISING FOR: 
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Figure L- 7.    Performance Advantages of Neural Networks. 

NN  IS VERY PROMISING FOR REPLACING EXISTING TECHNOLOGY 

COMPLETELY 
AGREE 

AGREE 
w/ 

RESERV. 

NEUTRAL MILDLY 
DISAGREE 

STRONGLY 
DISAGREE 

Figure L-8.    Potential for Replacing Existing Technology. 
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THE  MOST PROMISING SECTOR  FOR 
NN APPLICATIONS IN THE NEXT 25 YEARS IS: 
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Figure L-9.    Share of Civilian versus Military Applications. 
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Figure L-10.    Application Challenges. 
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THERE WILL BE SOME CRITICAL SOCIAL 
IMPLICATIONS IN  NN APPLICATIONS IN THE NEXT 25 YEARS 
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Figure L-ll.    Potential Social Impact. 
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Figure L-12.    Fundamental Limits. 
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NN APLICATIONS  IS: 
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Figure L-13.    Limiting Factors. 
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Figure L-14.    Neural Network Psychology. 
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Figure L-15.    Applicability to Human Psychology. 

IN 25 YEARS THE PROCESSING CAPABILITIES OF 
NN WILL EQUAL OR EXCEED THAT OF THE HUMAN BRAIN 

I COMPLETELY 
AGREE 

AGREE 
w/ 

RESERV 

NEUTRAL MILDLY 
DISAGREE 

STRONGLY 
DISAGREE 

Figure L-I6.    Human versus Neural Network Processing Potential. 
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Figure L-l 7.    Speculative Phenomena. 
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1.   OVERVIEW 

1.1    CONTENTS OF PART V 

Part V of the Neural Network Study Technical Report consists of six chapters. The first gives an outline 
of Part V and discusses the charter of the Study's Simulation/Emulation Tools and Techniques Panel (Panel 
3). 

The second chapter, Algorithm and Solution Requirements, defines the requirements, mathematical and 
computational, for performing simulations of neural networks. 

The third chapter, Existing Hardware and Software, discusses the current status of hardware and soft- 
ware available and the technological issues that must be addressed when designing a simulator. 

The fourth chapter, Application Computational Requirements, outlines four examples of typical applica- 
tions the Department of Defense (DoD) community might be interested in solving and their computational 
requirements. 

The fifth chapter, Considerations for Future Simulations, lists a number of technological considerations 
this Panel agreed would need to be addressed to produce advanced simulators for applications listed in the 
fourth chapter. 

The sixth chapter, Conclusions Concerning Neural Network Simulation/Emulation Tools and Tech- 
niques, summarizes the finding of this Panel, from algorithm and application requirements to existing 
and future hardware capabilities, and includes recommendations concerning how simulators might be 
developed for DoD applications. 

1.2   THE PANEL CHARTER 

The Simulation/Emulation Tools and Techniques Panel's responsibility is to delineate techniques avail- 
able to neural network investigators using digital (serial and parallel) machines as well as special-purpose 
hardware, and to define future requirements for both hardware- and software-bound simulators. Neural 
network simulation needs range from the development and testing of algorithms to the development and 
testing of special-purpose hardware implementations. 

With respect to algorithm development and algorithm testing, simulation is generally accepted as a 
way to allow the most flexibility with "reasonable" computational throughput. This is accomplished by 
using conventional digital hardware and thus distinguishes this panel's role from that of the Advanced 
Implementation Technology Panel (Panel 5). 

At this time, neural network simulation of applications is generally overlooked. However, most (if not 
all) of the neural network applications defined by the System Applications Panel (Panel 4) are run on sim- 
ulators. For that reason, the computational requirements for near-term applications should be investigated 
by the Simulation/Emulation Tools and Techniques Panel. When designing implementation devices, there 
are two ways to take into account device characteristics: 
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• Build the device, analyze its characteristics, and then modify the design; or, 

• Model the device characteristics and analyze the design using a simulator. 

Thus, this Panel also investigated the possibility of incorporating device characteristics into the simulator. 



2.  ALGORITHM AND SOLUTION REQUIREMENTS 

This chapter defines the processing requirements for the simulation of neural networks. There are 
many definitions of neural networks, each one of which can lead to a different set of computations. These 
computations can range from iterating a signal through a sequence of maps to the solving of a massive 
number of nonlinear differential equations. Outlined below are the types of neural network definitions 
and their corresponding computational needs. 

2.1    PROCESSING DEFINITIONS OF NEURAL NETWORK ALGORITHMS 

One of the main difficulties in designing a general-purpose simulator for neural networks is the over- 
abundance of descriptors used in their definition. This section will group algorithms according to four 
descriptors: 

• Equation type, 

• Connection topology, 

• Processing schema, and 

• Synaptic transmission mode. 

These descriptors have been selected for their effect on the hardware and software requirements of simu- 
lators as well as on implementation hardware. 

2.1.1    Equation Types 

The equation type descriptor determines the ability of the network to be simulated on special-purpose 
software or hardware. Difference equations (e.g., iterative maps) can be implemented on high-speed 
special-purpose hardware due to the inflexibility of the computations involved. Differential equations 
as well as algebraic/optimization networks perform a variety of calculations determined primarily by the 
state of the network. Those type of networks require more flexibility in the software and hardware and 
are therefore more difficult to implement on special-purpose machines. 

Differential 

Algorithms are described either as sets of difference equations or differential equations. One example 
of a differential equation description is the Oriented Feedback layer of the Grossberg/Mingolla Boundary 
Contour System: 

JI
V
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= "O* + W *•/*) ~ V*Jk J2 H( ZVqk) Wpqij- (2 • 1) 

(p,«) 



Often one is interested in integrating the differential equation solution to steady-state for a given set of 
initial conditions, although there are many examples where the detailed dynamics of the equations are 
critical (see for example, [3]). 

Difference 

Every differential equation can be rewritten as a difference equation. For instance, Kohonen describes 
his Tonotopic Feature Map in either of the following forms: 

-m,(i) = a(t)[x(t)-m,(t)] (2.2) 
at 

or 
mi(tk+i) = mi(tk) + a(tk)[x(tk) - m,(ifc)]. (2.3) 

The dynamics of the differential equation determine the applicability of using the difference equation 
form for simulation. The difference equation is identical to solving the differential equation using Euler's 
Method with a fixed step size: 

d 
Xi(tk+i) = xdtk) + At—iKtfc) (2.4) 

at 
where A t is the step size. If the system of equations is considered stiff (see Gear) - that is, if the ratio 
of the largest to smallest eigenvalue is larger than 100 - then Euler's Method is an incompatible way of 
representing the differential equation as a difference equation. Under these conditions, other techniques 
must be used to solve the equation. Those techniques are described later in this section. 

If the algorithm can be rewritten as a difference equation, then the computations are reduced to an 
updating of the values of each neuron by the set of operations given in its description. There is a group 
of algorithms that are always described as iterative maps. Those algorithms, such as CMAC, are also 
computed in the same manner as difference equations. 

Algebraic/Optimization 

Work done in the study of backpropagation and its application to various empirical problems takes a 
different form. In this case, a neural network is a multi-layer (usually three) network of nested sigmoids. 
That is, 

o, = /,(<£>,;/,  >) (2.5) 
;' 

where o, is the output of the ith neuron, which is a sigmoid function (/;) depending on the neuron of a 
weight vector (WJ ) associated with the neuron and an input vector (I). The inputs are either fixed external 
inputs or outputs from other neurons or constants. The weight vectors are either constants or regarded 
as free parameters whose values are at the discretion of the modeler. Some node or nodes of the system 
are designated as output nodes. For fixed inputs, there is usually some known desired output. A cost 
function is determined (usually the sum of squares of the discrepancy of the output of the system from the 
desired input). The weights of the system are adjusted so as to minimize the cost function. This approach 
has a great deal of utility for specific applied problems as long as the function to be minimized (energy 
landscape) is not too complicated and the optimization technique is sufficiently powerful. 



2.1.2   Connection Topology 

General-purpose computers with global random access memory (RAM) can address any data element 
in memory with uniform speed. This ability to access any data element in memory places constraints 
on the hardware. Due to device characteristics, either the amount of memory available for global access 
must be small, or the speed with which it can be accessed must be lowered. Going off-chip or off-board 
for additional memory incurs a penalty in access time. High-speed simulators attempt to exploit the uni- 
form topology and locality of data storage to allow computation pipelining and/or simultaneous access to 
multiple data points. The topology of the interconnections in neural network algorithms (now viewed as 
architectures) determines if such a uniform topology exists. 

The connectivity of a network is the measure of how many processors on one level communicate to 
each of the processors at the next level. If the layers contain processors in a one-dimensional space, 
then the connectivity between the layers can be represented as a matrix. Each dimension of the matrix 
corresponds to either the input layer(L') or output layer(L,+ l) of processors. A/w//y-connected network 
has a fully-populated matrix (see Figure 2-1). Each input processor is connected to every output processor. 
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Figure 2-1.    Neural Network Connectivity. 

A network that is used in preprocessing imagery may use on-center/off-surround interactions. Each 
processor is connected to its corresponding processor in the next layer with an excitatory weight and 
to a surrounding region with inhibitory weights. This is a /oca//y-connected topology and for a one- 
dimensional space the matrix will be banded diagonally (see Figure 2-1). 

A Markov Random Field network is an example of a system that uses connections only to nearest- 
neighbor processors. There are only three connections for a one-dimensional system: to itself, the neigh- 
bor on the left, and the neighbor on the right. Locally-and nearest-neighbor-connected networks are iden- 
tical when the radius of the surrounding region for a locally-connected network is one neuron. Therefore, 



a nearest-neighbor connectivity matrix is also banded diagonally (see Figure 2-1). 

The final connectivity category is for connections that are randomly distributed between the two layers. 
These networks may or may not have topological importance to their connections. Their connectivity 
matrix is randomly populated (see Figure 2-1). 

The extension of the connectivity matrix from one-dimensional systems is in two directions: higher- 
dimensional systems (2-, 3-D for vision, etc.), and to allow connections within a layer (intra-level). The 
connectivity matrix for higher-dimensional systems becomes a connectivity tensor. The banded diagonal 
representation remains a banded diagonal in a higher dimension. An alternate representation of the tensor 
is a series of matrices. The connectivity of each matrix will be a banded diagonal. When intra-level 
connections are allowed, the former representation becomes one quadrant of a expanded matrix. The 
dimensions of the matrix become a combination of input-and-output-layer neurons. The former matrix is 
the quadrant depicting input-to-output neurons. 

Except for randomly connected networks, the connection topology of all other networks is compact. 
The requirement for global RAM for the entire network is unnecessary. Therefore, hardware can take 
advantage of the finite need for accessing global memory in the processor. Randomly connected networks 
require complete random access and most likely can be simulated on general-purpose hardware processors. 

2.1.3 Processing Schema - Synchronous, Asynchronous 

Nodes in a network are said to be updated synchronously if the output at the next iteration in the net- 
work depends entirely on the prior state of the network. Nodes in a network are said to be updated asyn- 
chronously if they can be updated on a component, or block-by-block, basis. Virtually all neural network 
models have in the past assumed synchronous updating, but asynchronous updating has advantages in 
terms of ease and speed of computation. 

However, asynchronous processing in numerical processing has a more limited domain of stability 
(see [9] for examples). At the Jet Propulsion Laboratory, Barhen has recently begun to investigate asyn- 
chronous networks. Future hardware considerations may make such networks a promising alternate ap- 
proach. Asynchronous operation may relax overhead, such as single- and double-buffering of data lines 
as well as the additional control lines needed for synchronous operation. 

Of course, the processor can work asynchronously and simulate synchronous updates with the cost of 
additional memory storage. There is thus a complicated tradeoff of stability, memory access, and update 
speed which is, unfortunately, model-dependent. For the near-term, simulators may not need the ability 
for such operations due simply to a lack of interest. The driving force in the future for such a class of 
algorithms, and thus simulators, may be implementation device limitations. 

2.1.4 Temporal and Non-Temporal Synaptic Transmission 

The general computation model for neural networks is neuronal values multiplied by synaptic weights 
summed across the input to a neuron. The neuron acts on the summed value and its output is multiplied 
by weights and used as an input to other neurons. The output of the neuron has either a binary, integer, 



or floating point value. The propagation time (or delay) between neurons is considered negligible. Com- 
putations are performed assuming non-temporal synoptic transmission of data. Researchers interested in 
modeling biological tissue have a slightly different computation model. The output of a biological neuron 
is a series of pulses whose frequency can be related to the output value of the general computation model. 
The propagation time between neurons has an impact on the phase of the received signal. The temporal 
synoptic transmission characteristics are essential to the performance of such systems. 

Bower, at the California Institute of Technology (CIT), and others have elaborate models that require 
the simulator to keep track of the phase of all the pulses within the network. 

2.2 LEARNING VERSUS EXECUTION 

Networks that allow changes in the synaptic weights are called learning networks. An example of such 
a network is 

—Xi = -x, + fi( ^2 ZijXj). (2 .6) 

The value of 2,; represents the synaptic weight between the recipient node, whose activity is z,, and the 
node whose activity is xj. Typically, when Zy is varying, it obeys an equation of the following form: 

d , 
—Zij = -h(zij) + axi(t)xj(t - Tj) (2.7) 

where h is typically a linear function and called & forgetting function. These equations are called modified 
Hebbian rules of learning. If x, and xj are replaced by ^ and -%{•, the equations are known as modified 
differential Hebbian rules of learning. 

In Equation 2.5 as well, one can distinguish between the phase of operation where the weights change 
and the phase of operation where the weights are adjusted so the desired transduction is achieved. In both 
cases, the learning phase requires much more complicated and computation-intensive operations per step. 
For example, in a fully-connected network of dimension n, weight updates require order n2 operations. 

Also, the dynamics of learning are typically slow: weight adjustment requires orders of magnitude more 
time than operation of the network in the steady-state condition. It is possible to compute a rough measure 
of the necessary number of presentations of a training pattern before steady-state occurs. The number of 
presentations is proportional to the number of patterns in the training set. Therefore, to train a network 
with 250 patterns, each pattern should be presented roughly 250 times. Training time is over two orders 
of magnitude longer than execution time! 

Once, however, a satisfactory learned value of the weights is achieved, the dynamics are much more 
rapid and, especially in a sparsely-connected case, the networks transduce an output for a fixed input 
orders-of-magnitude more rapidly than in the learning phase. It follows that after learning a specific 
application, the application often can be "hard-wired" and the result computed much more rapidly than in 
the learning phase. 



2.3    COMPUTATION REQUIREMENTS 

Note, again, that the descriptors used for the neural network definition translate into the type of compu- 
tations necessary to perform the simulation. Only two descriptors are needed to distinguish the simulation 
tasks: equation type and synaptic transmission characteristics. Three tasks evolve from those descriptors: 

• Multiply-accumulate operations, 

• Solving differential equations, and 

• Pulse-code storage with link scanning. 

2.3.1 Multiply- Accumulate 

Due to the nature of neural networks - many parallel processors with a high degree of connectivity - 
it is not surprising to find that the bulk of their computations are in multiply-accumulate operations. In 
every network equation there is an operation such as 

N 

Y^WijXi (2.8) 
l 

where N is the number of interconnections to neuron j. This is a typical example of a multiply-accumulate 
operation. 

The relative importance of the multiply-accumulate operation to the neuronal computation is over- 
whelming. For a network with an average connectivity of ten, 

10_ J2 Connections 
Y2 Neuron 

and when the number of operations for computing the neuronal output is four, the number of multiply- 
accumulate operations is 2.5 times that of the neuronal operations. Average network connectivity can 
range from one connection per neuron to 10 4 connections in biological tissue. 

2.3.2 Solving Differential Equations 

The dominant methods of solution involve linear vector sums of the values of the answer at prior points 
and may involve multiple function evaluations. Since the function's evaluations are normally dominated 
by multiply-and-accumulates, this leads to a higher dominance of multiply-and-accumulates. Note that 
many of the reliable differential equation solution methods (e.g., Gear's Predictor Corrector Method) 
require the storage of many back sets of values. Thus, using Gear's nonstiff method (see [4]), which is a 
very widely used method to solve differential equations, may require up to 14 times the number of data 
points as the size of the system. 
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2.3.3    Memory and Link Scanning 

For many simple neural networks whose network topologies are one-dimensional, a simple vector 
pipeline or systolic array will provide adequate addressing for the multiply/add/accumulate operations 
which constitute the bulk of the computations done in a neural network. However, many - perhaps the 
majority - of neural networks need more complex data access capability because often local relationships 
are multi-dimensional. Research is needed in devising a local access scheme which is general enough for 
most applications but restrictive enough to provide memory access at a higher rate than general-purpose 
computers. 

It is worth noting that since the dominant operation in neural network computation is add/multiply/accumulate, 
with relatively infrequent stores to memory, read-and-fetch operations need to be much faster than the rel- 
atively infrequent write operations. 

2.4    SOLUTION METHODS 

In this section, the classical techniques for solving problems in unconstrained optimization and integrat- 
ing differential equations are outlined. Where noted, new advances in technique promise both increased 
stability and speed of analysis. These advances should be more widely used and adapted to neural network 
research for a number of reasons. 

The first and most obvious reason is that the best numerical technique yields an increase in precision 
for a given computational effort, or the same precision for less computational effort. However, it is often 
remarked that little precision in output is needed in neural network research. If this is the case, why should 
one be concerned with numerical methodology? Even when one is only interested in a result with a small 
output precision, one should realize that error often propagates in an explosive manner if one uses an 
inferior numerical technique, so that the output of the system may be in fact orders of magnitude in error. 
In this case, the output of the system will be dominated by the details of the numerical technique used, not 
by the neural model. This is hardly a desirable situation. 

Techniques that numerically integrate differential equations are at a relatively mature state of develop- 
ment. One probably should not expect major breakthroughs in algorithmic efficiency or accuracy at this 
time. However, problems in optimization are still poorly understood and breakthroughs in the efficiency 
and the reliability of algorithms may be occurring and may be fostered by an infusion of well-placed 
funding. 

2.4.1    Classical Methods for Solving Differential Equations 

Most methods for integrating differential equations involve constructing formulae which approximate 
the Taylor Series Expansion of the integral of the differential equation at a point. The number of terms in 
the series minus one is called the order of the method. The step increment used is called the stepsize of 
the method. We will discuss three such classes of methods. 



Euler's Method 

Euler's method approximates the solution of a differential equation by a first-order difference equation. 
Thus if the differential equation is x = f(x,t), in the differential equation of the neural network to be 
modeled, Euler's method replaces the differential equation by the difference equation 

ij+i = i,; + f(%i, to + ih)h (2.10) 

where x, is the approximate value of the integral equation at to + ih. This method has the advantage 
of simplicity and ease of calculation. It has the disadvantage of instability and low precision for the 
computational effort. In one simple problem, Euler's method required more than two orders of magnitude 
more iterations to obtain the same error as a simple Taylor Series expansion of order 2 with the same 
error. [7]. 

For this reason, neural network simulators should be built which implement more sophisticated tech- 
niques than Euler's method. 

Runge-Kutta Methods 

Runge-Kutta methods occupy a unique place in differential equation techniques in that they are self- 
starting and easily adjust to different step sizes. Runge-Kutta methods accomplish this by using sums 
of nested function evaluations to derive the approximation to the Taylor Series expansion. Large order 
Runge-Kutta methods require large amounts of working memory and many function evaluations to store 
intermediate results. In addition, for problems which have very high dimensions Runge-Kutta methods are 
generally less efficient than the predictor-corrector methods described below. In summary, Runge-Kutta 
methods are suitable for small to intermediate size systems or for producing the initial values for large 
size systems. 

Predictor-Corrector Methods (Gear's Method) 

If y = f(y,t) is the general form of a differential equation, then the most general form of a linear 
predictor-corrector method is: 

k k 

YlfJihfj'h^fijUj, n-0,1,2..., (2.11) 
;=0 ;=0 

where fa = /($/*, t + kh), a}-, and /3y are constants and o^ ^ 0. Such a method is called a linear k-step 
method. In order to generate the sequence of approximations, it is necessary to obtain k starting values 
J/o, J/i i • • • Vk-\ • Then the computation takes one of two possible forms. First, if fa = 0 then y^k is 
immediately obtained and such a method is called an explicit multi-step method. If fa ¥ 0, then such 
a method is called an implicit multi-step method. In the case of an implicit method, an approximation is 
found to t/n+fc by iterating the defining equation until the difference in the iterates for y^k is sufficiently 
small. Because the implicit multi-step methods are more stable and therefore more accurate than the 
explicit ones, one typically proceeds as follows: first one uses the explicit multi-step method to predict a 

10 



starting iterate to a corresponding implicit multi-step algorithm, which is then iterated a number of times 
to produce a final output. Such a method is called a predictor-corrector method. 

Gear's method is a predictor-corrector method which adaptively adjusts the order of the method (the 
number of steps in the summation) and the stepsize in order to minimize the error for a given iteration. 
Values between steps are extrapolated if necessary. Gear's method is generally fairly efficient over a wide 
range of error bounds and requires a fairly minimal number of function evaluations and is suitable for 
large systems. Drawbacks include the need to store often 15-to-20 times the number of output points as 
working storage, and many iterations for a high degree of accuracy. 

2.4.2    Classical Methods of Solving Optimization Problems 

The classical methods for solving optimization problems are modifications and adaptations of Newton's 
method and the method of steepest descent. We will concentrate on conjugate gradient methods, which 
"... although they are far from ideal are the only reasonable method available for a general problem in 
which the number of variables is extremely large" [6]. 

Although there are methods which theoretically will find the local minimum with probability one, should 
one compute for an indefinitely long period of time (see for example [5]), these methods are not tractable 
at the present time for most large minimization problems. 

The Method of Steepest Descent 

The method of steepest descent, known in the neural network literature as backpropagation, updates 
the weights of the network in the direction of steepest descent. That is, 

Wn+X - wn =-Wwf (2.12) 

where f is the function to minimize and A is a parameter specified to complete the description of the al- 
gorithm. This method has the advantage of simplicity and reliability. However, convergence is often 
excessively slow near local minima. Substantial speedups in convergence can be achieved by using clas- 
sical minimization techniques. 

Newton's Method 

Newton's method for a minimization problem can be written: 

wn¥X-wn = -\H-\Vwf) (2.13) 

where H is the Hessian of the function / to be minimized. This is an attempt to apply Newton's method 
to the equation Vwf = 0. Newton's method converges extremely rapidly in a neighborhood of the mini- 
mum. However, this method requires the computation of a matrix of second derivatives and then a matrix 
inversion which is very computationally costly. For a large system, the amount of storage which may be 
necessary for this matrix or the Hessian matrix may be prohibitive. Far from the minimum point, New- 
ton's method may be unstable and require many iterations with small stepsize A for convergence to the 
minimum. 
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Quasi-Newton Methods 

These methods attempt to replace the Hessian Matrix or its inverse by an approximation which is cal- 
culated from successive values of the gradient Vwf. The methods shares rapid convergence near the local 
minimum with Newton's method, may be more stable far from the minimum, and are computationally 
more efficient. 

However, often they still require storage of a large matrix of coefficients, except when the problem is 
very sparse. Moreover, update time is often quite expensive (order n2, where n is the dimension of the 
system). These methods are only suitable for small or intermediate-size problems, or for large but very 
sparse problems. 

Conjugate Gradient Method 

These methods are techniques of modified gradient descent chosen so that each direction is conjugate 
(orthogonal) to the prior direction. The direction of each successive step dk+1 is chosen so that 

dk+\ =-\wf(wk+\) + Pkdk (2.14) 

with 

Pk=     ,|x     ,, TTJ2- (2.15) 

These methods have the advantage that they only increase the amount of storage by a factor of two over 
the method of gradient descent, but the theoretical converge rate is faster than linear. In fact, the rate of 
convergence is usually quadratic for each n iterations of the method where n is number of weights. Their 
disadvantage is that convergence can be slow if the condition number (the ratio of the largest to smallest 
eigenvalue of the Hessian Matrix) is at the local optimum. Preconditioning offers a way to improve these 
results. In any event, the conjugate gradient method is typically far superior to gradient descent in a 
neighborhood of the local minimum. 

2.4.3   New Methods of Solution 

The new methods of integrating differential equations focus on extensions involving ease of use and 
automatic changing between solution methods (for example see [ 11 ]). There have been no major algorith- 
mic breakthroughs recently which markedly increase the rate of computation, so the focus here is instead 
on methods of optimization and methods for multiprocessors. 

Preconditioning 

Recall that the rate of convergence of the conjugate gradient method speeds up considerably if the ratio 
of the largest to the smallest eigenvector is close to one. The idea of preconditioning is to rescale the 
directions of descent in an appropriate manner, so as to substantially reduce the condition number of the 
matrix. The methodology of preconditioning for selecting the appropriate choice of the preconditioning 
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matrix is under active research. A number of choices are the diagonal elements of an approximate Hessian 
matrix. (See [6] for further references.) 

2.4.4    New Methods for Multiprocessors 

With the advent of multiprocessing computer architectures the focus of solution methods for systems of 
differential equations has changed. Although initially developed for uniprocessor systems, the multigrid 
solution methods (see [2]) are well suited for concurrent hardware. While standard relaxation techniques 
work on a standard mesh size, the multigrid technique uses a variety of mesh sizes (scaled by factors of 
two) for relaxation. The application of this technique to concurrent processors appears straightforward. 
The number of processors represents the most coarse mesh size and each processor will process the region 
associated with its portion of the coarse mesh for each of the finer meshes. Variations of this scheme, such 
as using stochastic access to the processors, are also being investigated [13]. 

2.5   BIOLOGICAL COMPUTATIONAL REQUIREMENTS 

Simulations are required for understanding biological as well as artificial neural networks. Two sets of 
biological computations are generally found: the simulation of biological systems, and the processing of 
experimental data. 

2.5.1 Simulation of Biological Systems 

Bower at CIT and others have been developing custom simulation packages for analyzing specific topo- 
logical and chemical structures found through neuroanatomical examinations. In particular, Bower has 
developed a software package to execute on a Sun Microsystems workstation or a Hypercube parallel 
processor to investigate the dynamics of the pyriform cortex. The addition of phase information to the 
synaptic transmission is a divergence from the standard artificial neural network simulation approach. 

2.5.2 Experimental Measurements 

The ultimate goal of many neural network modelers is to develop systems which function similarly to 
the brain. For this and other reasons, it is of interest to attempt to understand how the brain is processing 
information. Similarly, there is a large body of knowledge from the field of behavioral psychology on 
how living systems respond to stimuli. What neural network modelers want to know is the design which 
ties individual cell characteristics to behavior- i.e., the information processing methods of large arrays of 
biological neurons. 

This body of knowledge remains to be formulated, largely because of technical experimental reasons. 
First there is the problem of measuring the states of large numbers - say, 1,000 - of neurons in a behavioral 
situation. Figure 2-2 indicates two possible methods - micro wire and dagger probes. The idea behind 
both methods is to insert fine electrical conductors into tissue and to relay the data about pulse structures 
out to a computer for analysis. The second experimental problem is to get the data out to the analysis 
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station on a reasonable number of wires - e.g., by multiplexing micro and milli-volt signals. The dagger 
approach offers the potential for fixing electronic circuitry on a silicon dagger to help this data transmission 
problem. 

Even assuming that the information can be gathered by a number of probes inserted into an animal, 
there remains the problem of relating the data to the animal's behavior. This is in itself a substantial 
problem, probably involving a very large amount of correlation operations on the databases. The Neural 
Network Study Simulation/Emulation Tools and Techniques Panel considers this analysis problem to be 
in a separate domain, largely because of the need for vast amounts of digital computational power. 

For an order-of-magnitude estimate of the level of computational power required for this analysis, con- 
sider the case of 1,000 active measuring sites. Each site will produce up to 50 action potential spikes per 
second. It is estimated by neurological experimenters that each spike will require 10 bytes to be properly 
characterized digitally. Thus the output rate from the measurement section of the multicellular record- 
ing/analysis system will be at 500 kilobytes per second (kbytes/sec) (see Figure 2-3). 

There is another issue, too: how much data do the experimenters need to analyze to determine behavioral 
characteristics relative to the electrical pulses? The order-of-magnitude time estimate is an hour - or 3,600 
seconds. This means that the analysis portion of the system must be able to correlate up to two gigabytes 
of data. 

These estimates indicate that the neuronal measurements can be placed in the lower righthand region of 
the speed/capacity diagram referred to above: a large capacity but not unreasonable rates, provided that 
off-line analysis is accounted for. The equating of a connection with a spike profile is taken as reasonable 
since the analytical operations will be of the correlation type, at least at the beginning. It is interesting 
to consider the use of artificial neural network models to assist in the analysis, since the computational 
nature of both the artificial and the biological neuron is signal processing. 

The final conclusion is, however, that the determination of the relationship between biological neuronal 
activity and an organism's behavior is a problem on the same order as the simulation of large, slow artificial 
neural networks. 

2.6   SIMULATION OF IMPLEMENTATION DEVICE CHARACTERISTICS 

One of the advantages of neural networks is their eventual implementation in highly parallel hardware 
for realtime performance. Due to the large number of devices in such hardware, it would be necessary to 
simulate performance prior to actual fabrication. The effects of nonuniformity in the devices with respect 
to network performance is of especial interest. Three areas that can be affected by such nonuniformity 
are: 

• The neuron nonlinear transfer function (shift in curve or slope change), 

• The gain in the synaptic weights, and 

• The learning function. 
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This nonuniformity can be fixed or stochastic. Simulators with the capability to adjust the device charac- 
teristics in a deterministic way are necessary to understand the precision necessary in device fabrication. 

2.7   SUMMARY 

There are a range of computations that must be performed when simulating neural networks. Currently, 
the bulk of simulations are performed by either iterating difference equations or maps. The intensive 
processing step for these systems is predominantly multiply-accumulate operations. 

The next largest computation structure used in simulations is the solution techniques for large systems 
of differential equations. Although these structures also require large number of multiply-accumulate 
operations, they also require additional computations and storage related to the technique and dynamics 
of the network. 

There are a variety of well-established algorithms to solve differential equations. New algorithms are 
being developed to quicken the solution time and to take advantage of multiprocessor systems. 

Optimization networks can be simulated in an efficient manner by borrowing techniques from the lit- 
erature. Those techniques are usually not tractable for large systems but the conjugate gradient technique 
is viable for sparse networks. 

Although not currently in vogue, biological network simulations and networks requiring asynchronous 
processing and temporal synaptic transmission qualities are worthy of interest. Simulation hardware and 
software may need to address the issues associated with these qualities, or at least some significant subset. 
Simulators may need to be separated by their abilities and inabilities to compute particular systems. 
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3.   EXISTING HARDWARE AND SOFTWARE 

3.1    INTRODUCTION 

The purpose of this section is to review the current state of the art in neural network implementation 
software and hardware. The data are based on interviews with selected researchers and developers and on 
a questionnaire sent to commercial vendors of neural network software. 

There is unanimous agreement that computational speed will ultimately become a stumbling block in 
the application of neural networks. However, there are many different scenarios in which neural networks 
can be implemented and each of these has their own speed requirements. Further, speed requirements are 
determined by the algorithms being performed. For instance, in trained systems the learning procedures 
are often time-consuming. However, training can usually be performed off-line before the system is sent 
to the field. 

The environment in which a neural network simulation is placed is a major determinant of its speed 
requirements. The most stringent requirements are expected to occur in a military system application 
where the neural network's input data are derived from a realtime sensor. Military systems often have to 
operate in a restricted volume and over wide temperature ranges. 

However, there are few, if any, systems of this sort in existence at this time. The systems surveyed by the 
Simulation/Emulation Tools and Techniques Panel have all been laboratory research tools. These kinds 
of experiments have considerably reduced speed requirements and face no major constraints on their size. 
Speed is more a matter of convenience than of functionality. As a result, existing high-speed computer 
systems are adequate for today's research purposes. 

Two distinct types of neural network investigations exist. One is the simulation of biological neural 
networks and the other is the use of simplified neuron-like structures for applications research. Of the 
two, the biological simulations seem to be more computationally difficult. Actual neurons contain several 
different physical processes and, as a result, are very complex. Application studies concentrate on the 
benefits of parallel distributed processing and use models predicated, for the most part, on the addition of 
weighted inputs and soft-limiting (or sigmoid) computation. 

3.2    HARDWARE CLASSES OF NEURAL NETWORK SIMULATIONS 

As in most computing systems, neural networks are simulated in either batch or interactive modes. 
There appear to be five distinct types of hardware systems used: two for batch processing, and three for 
interactive or workstation environments. A breakdown of these processor types and modes is shown in 
Figure 3-1. The two batch processing methods are the superspeed computer and the massively parallel 
processor. These are popular with academic institutions which appear to be able to obtain access to these 
types of computing resources. The workstation systems are the attached processor, the bus-oriented sys- 
tem and micro or minicomputer systems. Each of these systems is discussed below. Table 3-1 shows 
a comparison matrix of the speeds obtained with each system type and an indication of their size and 
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Figure 3-1.    Types of Processors Used in Neural Network Simulations. 

cost. Additional information on eight state-of-the-art parallel hardware engines is supplied in Appen- 
dix A. The architectures vary from SIMD (single-instruction/multiple-datastream) to MIMD (multiple- 
instruction/multiple-datastream), but all take advantage of some sort of parallelism. 

Before proceeding too enthusiastically with the use of the speed numbers quoted in Tables 3-1 and 
3-2, several explanatory and cautionary comments should be made. In neural network simulations, as in 
most other computer environments, it is very difficult to develop a metric that fully portrays functional 
speed. The term 'interconnections/second' is common in the discussion of neural networks. This refers 
to the number of multiply-and-add operations that can be performed in a second and is, of course, a quite 
important measure. However, the quoted interconnections/sec may or may not include the time necessary 
to obtain the variables that are to be multiplied and added. It may also ignore other functions that might be 
required by some algorithms, such as the comparison of values or the computation of a sigmoid function. 
More data than a simple "interconnections/sec" measurement are needed to appraise computational speed. 

Another difficulty in comparing computational speeds is that there are few neural network simulation 
production systems. It is likely that considerable code optimization is possible for most systems. 

In summary, speed differences of orders of magnitude are probably significant; small differences should 
be used with great caution. 

3.2.1    Supercomputer 

The supercomputer category is meant to include very high-speed commercial scientific computers. 
An example of these is Cray Research Inc.'s X-MP. Architecturally, these machines are based on very 
high-speed semiconductor processes (ECL or GaAs), multi-port, heavily-interleaved memories, vector- 
ized arithmetic units, and relatively long operation pipelines. Multiple processor operation may take place, 
but the number of parallel processors is not large (less than 20, usually less than 10). Speed is obtained 
through fast logic and clever processor design rather than a proliferation of processing units. 
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Processor interconnects 
sec size Cost 

Super Computers 
Cray X-MP 50M/sec room size >$1M 

Massively Parallel 
Connection Mach. 13M/sec room size >$1M 
Hypercube room size >$1M 
Butterfly 8M/sec room size >$1M 
WARP (10) lOM/sec room size $300K 
Parallon 16/2X 20M/sec room size $40K 

Bus-Oriented Mach. 
TRW MK III 500K/sec desktop $75K 
TRWMKV(16) lOM/sec desktop $100K 
MX-1/16 120M/sec desktop $300K 

Attached Processors 
SAIC SIGMA-1 5 - 8M/sec desktop $15K 
TI Odyessy 5M/sec desktop $15K 
AINet 45 K/sec desktop $3K 

Micro/Mini Computer 
Workstations IBM PC AT 160K/sec desktop $8K 

SUN 3 250K/sec desksize $20K 
Apple Macintosh 5K/sec desktop $8K 
Symbolics 35K/sec desksize $100K 
DEC VAX 2M/sec room size $400K 

Table 3-1. 

Selected Neural Network Hardware Simulators 
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HARDWARE WORD STORAGE SPEED COST SPEED 

LENGTH (K Intercnts) (K Int/Sec) ($) COST 

WORKSTATIONS 
Micro/Mini PC/AT 16 100 25 5K 5.0 
Computers SUN 3 32 250 250 20K 10.0 

VAX 32 100 100 300K 0.3 
SYMBOLICS 32 32,000 35 100K 0.4 

Attached ANZA 8-32 500 45 10K 5.0 
Processors A-l 32 1,000 10,000 15K 300.0 

TRANSPUTER* 16 2,000 3,000 4K 750.0 

Bus-Oriented MARK III, IV** 16 1,000 500 75K 7.0 
Machines ODYSSEY*** 16 256 20,000 15K 1000.0 

MX/1-16* 16 50,000 120,000 300K 400.0 

MASSIVELY CM-2 (64K) 32 64,000 13,000 2,000K 6.0 
PARALLEL WARP (10) 32 320 10,000 300K 30.0 

BUTTERFLY (64) 32 60,000 8,000 500K 16.0 

SUPER- CRAYXMP(l) 64 2,000 50,000 4,000K 15.0 
COMPUTERS 

* Projected 
** Host Required 

Table 3-2. 

Neural Network Simulation Engine Comparison 
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The table shows that the supercomputer category is the fastest operating implementation. Its principal 
difficulties are its size and expense. In addition, respondents to this Panel's questionnaire complained that 
software was not as easy to use as that available for the workstation environments and that the hardware 
was a bit temperamental. 

Most of the work reported with these machines was custom programmed in a higher-order language 
(HOL) (e.g., FORTRAN). 

3.2.2    Massively Parallel Processors 

This is a bit of a muddled category, as it is meant to apply to several new processor types that achieve 
high speed through the use of a very large number of parallel operating processors. We include here 
Thinking Machines Corp.'s Connection Machine, the Hypercube, and Bolt Beranek & Newman's Butter- 
fly machine, though in architecture these machines are radically different. They all achieve high speeds, 
however both the Connection Machine and the Hypercube have restrictive communication paths between 
processing nodes. As the nature of neural networks is to emphasize a high degree of connectivity, the 
Hypercube and the Connection Machine can sustain dramatic decreases in throughput because of com- 
munication delays. Arguably, it may be possible to eliminate some of these through careful program 
design. Nonetheless, it would appear that communications are a particularly important aspect of using 
large parallel structures in neural network emulations. 

While the Panel does not do not have throughput estimates for the Butterfly, it would appear that its com- 
mon memory structure makes it more amenable to neural network applications. On a simple qualitative 
basis, neural network users are happy with the Butterfly's throughput. 

Machines in this class are custom programmed in an HOL, though several software tool sets written 
in C have been successfully rehosted to this class of processor. In general, applications are debugged 
in a microcomputer or minicomputer workstation environment before they are run on massively parallel 
machines. 

3.2.3    Bus-Oriented Processors 

This is a class of processors that achieves high throughput through the use of multiple microprocessors 
connected on a commercial bus. The number of processors in this category can vary from two to 20. 
This is different than the previous category of massively-parallel processors where hundreds to thousands 
of separate processors are operating in concert. TRW's Mark III is an example of this type of system. 
It uses a number of parallel Motorola 68020 microprocessors with a customized memory interface to a 
standard VME bus. Coupled with custom software, the machine is quite successful. Its high throughput 
is, again, an example of how memory structure (communications between processors), in addition to raw 
computational throughput, is an important facet of implementing neural networks. While the Mark III 
system can operate by itself, it is usually operated in conjunction with a Digital Equipment Corp. VAX 
computer that handles interfacing and loading of the neural network processor. 
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A limitation in this class of neural network simulation is the speed of the commercial bus. Eventually 
this will put a limit on the functional throughput, no matter how many processors are added to the system. 
The point where this limit will be reached is subject to considerable speculation. 

This class of implementation is quite efficient in terms of its cost/performance ratio. 

3.2.4   Attached Processors 

This class of machine consists of neural network engines coupled with a conventional microprocessor 
or minicomputer. Two examples are the SAIC Sigma I and Texas Instruments' Odyssey. Both of these 
are new designs and are predicated on high-speed multiply-and-accumulate operations with a special- 
ized memory interface. The attached processors are relatively small and inexpensive yet offer excellent 
throughput rates. 

By attaching to more or less traditional computer systems (TI's Odyssey is really a LISP-based proces- 
sor), the attached processors can take advantage of extensive graphics, database, and support software. 

The SAIC processor uses a BIT Technology emitter coupled with a logic-based multiply accumulator 
chip and a custom-designed dual memory system. The TI processor uses single-chip digital signal proces- 
sors (which provide dual internal memory structures). These LSI devices were developed for applications 
other than neural networks, but with proper system design (especially with regard to memory interfaces) 
they fit extremely well into neural network applications. 

Attached processors appear to offer the best price/performance ratio, provided software exists. In addi- 
tion, their utilization of existing new VLSI devices indicates that neural network digital implementations 
do not present radically new architecture problems. 

3.2.5    Mini/Micro/Lisp Processors 

The most commonly used category of neural network implementation environments is the desktop 
workstation. Examples of these are the IBM PC AT, the Apple Macintosh, the Sun Microsystems worksta- 
tion and the Symbolics LISP-based workstation. The Simulation/Emulation Tools and Techniques Panel 
speculate that these machines are used so frequently because they are so common. Moreover, they offer 
a vast amount of graphics and support software that can be applied directly to neural networks. The diffi- 
culty with stand-alone micro and minicomputers is that they are quite slow when compared with the other 
implementations. Few of the Panel's respondents felt that the small-scale mini/micro standalone work- 
stations would be adequate for anything other than research and development purposes. Most specialized 
neural network software tools have been developed for the mini/micro computer environment. 

3.2.6   Other Processing Machines and Architectures 

There are machines and system architectures that have yet to be used for neural network simulations but 
it is worth mentioning their merits. The Research Parallel Processor Project (RP3) machine developed by 
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IBM is one such machine. The RP3 can support up to 512 processors that can be connected in a variety of 
topologies. Such a system can evaluate different parallel simulator architectures to optimize performance. 

IBM is also investigating the question of the level of parallelism necessary for implementation of a 
program. Although not within the purview of this Panel, the idea of comparing the parallel nature of 
"classical" algorithms and neural networks is appealing. 

The Parallon 16-2 multiprocessor from Human Devices, the Pipe pipeline system from Aspex, and 
the MX-1/16 multiprocessor developed at Lincoln Laboratory are three untested but high-throughput ma- 
chines. The Parallon uses a hierarchical communication structure with processors within the same board 
communicating over a parallel bus. The MX-1/16 uses a crossbar communication structure with a micro- 
processor and a digital signal processor (DSP) at each node. The Pipe uses video rate hardware to provide 
a high-speed image processing environment. All three machines offer substantial computation power - 
from 20 M vtsi2E•& for the Parallon 16-2 to over 100 M il&sr&sa&a for the MX-1. 

second second 

One additional point to be made with respect to the MX-1 and the Pipe machine is with respect to 
software integration. The MX-1 has been developed to operate in a LISP environment providing high 
computation throughput and symbolic manipulations. The Pipe uses a graphical description environment 
to describe how the discrete components for each of the processing stages are to be pipelined together. 

3.3    SOFTWARE TOOLS FOR NEURAL NETWORK MODELING 

There is an almost universal agreement that neural network simulations require better software tools. 
However, there is considerable activity in the development of these tools, and it appears that some emerg- 
ing programs will be very good. Existing software development tools in neural networks seem to fall into 
three basic categories. These are: 

1. Implementations of common neural network algorithms 

2. General simulation systems applied to neural networks 

3. Tool sets for developing neural network algorithms 

The first type appears to be both the simplest and the least useful. Its concentration on existing models 
makes it very easy to use and a valuable learning tool. However, researchers believe that these classes of 
systems are of very little value in the development of new algorithms or the implementation of practical 
systems. Most of these programs operate on either IBM or Macintosh personal computers. 

General simulation programs can be of either the differential equation solver type or circuit simulation 
programs such as SPICE. These packages are quite powerful and can be applied to a large number of 
problems. However, they are general-purpose tools and are considered by some to be awkward when 
applied to neural networks. Further, these classes of software tools are considered to be too slow by some 
researchers. 
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To be fair, it should be pointed out that the people who were most vocal in criticizing existing system 
simulation tools were the same people who were developing alternative neural network tool sets. This 
leads to a question: are custom tool sets being built because standard simulation packages are inadequate, 
or are standard simulation packages being criticized to justify the building of custom tool sets? 

In any case, most neural network support software development is in the area of custom neural network 
packages. One or two such programs are being undertaken by every academic institution that interviewed 
by the Panel. In addition, all of the commercial companies developing neural network workstations are 
also providing custom software packages. 

At the least, software tool sets provide a language for describing new neural networks and a graphics 
interface for portraying both the structure and the performance of neural networks. The difficulties are 
that the complex, multi-variable nature of neural networks is very difficult to present. Energy surfaces 
exist in n dimension space, and interconnection matrices are difficult to describe in a logically consistent 
and graphical manner. 

One area of debate concerns the value of providing a graphical method of drawing in nodal intercon- 
nections. One school holds this to be a natural way of expressing neural network structures, while another 
(larger) school feels that this method of defining networks is worthless for networks of practical size. 

Several researchers expressed the need for a standard simulation language to simplify comparisons of 
different types of networks. Not surprisingly, these people proposed their own tool sets for the standard 
and were not particularly knowledgeable about other developments. It is probably premature to attempt 
to develop a standard neural network language. 

3.4 SURVEY OF COMMERCIAL SOFTWARE PACKAGES 

As part of the Simulation/Emulation Panel's efforts, a questionnaire was sent to all suppliers of commer- 
cial neural network software. Fourteen responses were received for both commercial and internal software 
packages. A complete list of the results is given in Appendix B. The primary host for the simulators was 
the IBM PC/XT/AT family of personal computers. 

A surprising finding was the use of LISP as the base language for many of the simulators; the LISP envi- 
ronment is used because of the ease with which software systems can be developed. This finding suggests 
an opportunity to incorporate network algorithms with expert systems in a straightforward manner. 

Another finding was the specificity of the algorithms implemented on the simulators. Most packages are 
either for proprietary algorithms or a selected set of algorithms. The topology of the networks are flexible 
but the algorithms are fixed. The ability to construct new algorithms is not universal among software 
simulators. 

3.5 TECHNOLOGY ISSUES IN NEURAL NETWORK IMPLEMENTATIONS 

A popular belief is that digital neural network applications present requirements for a whole new class of 
digital VLSI components. Perhaps this will be the case when neural networks find widespread real system 
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applications. However, for the present, neural network implementations are very similar to conventional 
digital signal processing applications. 

In implementation terms, neural network simulations have the following structural components. 

• A majority of computations are multiplication followed by addition. 

• Roughly two memory addresses are required per multiply-accumulate. 

• Memory addressing is regular and predictable, as opposed to random or data-dependent. 

These properties are very similar to the computational requirements of such digital signal processing func- 
tions as FFT calculation, recursive and non-recursive digital filters, and one- and two-dimensional corre- 
lation functions. 

The computation of sigmoid functions appears to be unique to neural networks, but is actually similar 
to sin and cos interpolation functions also found in digital signal processing. Thresholding and finding the 
largest value of a set of signals are also common both in neural networks and in digital signal processing. 

Digital signal processors are already a major component in military systems. Furthermore, commercial 
industry as well as the VHS1C program have invested considerable resources in the development of VLSI 
devices designed for digital signal processing applications. The most applicable classes of these to neural 
networks appear to be: 

Single-chip digital signal processors which are available from:  TRW, Texas Instruments, 
Motorola, Zoran, Analog Devices, Plessey, and others. 

"Word slice components," chip families that normally provide an arithmetic multiply-accumulate 
chip, a memory address generator, and a controller. They are available from Analog 
Devices, Weitek, Honeywell, BIT Technology, Advanced Memory Devices, Texas 
Instruments, and others. Word slice components were the primary target for Phase 
I oftheVHSIC program. 

These are the kinds of components used in the attached processor class of neural network implementations. 
It is not surprising that this class demonstrated the best performance/cost ratio. It had the advantage of 
using the extensive technology base already developed for digital signal processing. 

Independent of the fate of neural network implementations, digital signal processing will continue to 
play a major role in both military and commercial systems. Neural network implementations will essen- 
tially enjoy a "free ride" on this technology bandwagon. 

Another requirement of neural networks is high-speed memory. This is perhaps not as severe a re- 
quirement as it might first appear, given that the regular and predictable addressing structure of neural 
networks allows the achievement of high memory speeds through memory interleaving and the utilization 
of cache structures. Nevertheless, existing technology trends are pushing memory speeds as fast as pos- 
sible. Both computers and digital signal processors rely on high-speed, high-density memories. ECL and 
GaAS memories promise speeds of one to five nanoseconds, while CMOS static memories of medium 
density are available with 15 nanoseconds access times. 
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The point is that the components for neural network implementations already exist and are being im- 
proved as fast as the state of the art will allow. The challenge in neural network simulations lies in de- 
veloping the architectures to effectively use these components. These architectures, in turn, will depend 
quite heavily on the particular algorithms and applications being considered. 

Another technology that is often suggested for neural network implementations is the use of massively- 
parallel computing structures. These systems rely on thousands of simple processors connected together 
and operating in a single-instruction/single-datastream manner. The advertising says that there are thou- 
sands of relatively slow neurons in biological systems, so thousands of slow processors should be the best 
way to simulate them. 

There is a major fallacy in this reasoning. Electrical connections and their control are quite expensive, 
while biological connections are cheap. The massively-parallel structures are all limited in the way their 
constituents communicate. This limits these machines' ability to operate as conventional computers, and 
it is even more limiting in the implementation of neural networks. Clever programming can often com- 
pensate for the deficiencies of massively-parallel structures, but cleverness is both rare and expensive. 
Furthermore, it can't be automated (yet). 

It would appear that the easiest way to digitally implement neural networks is with a relatively small 
number of high-speed specialized processors operating with a high-speed memory structure. This is, in 
essence, the approach taken with the supercomputer and the attached processor class of neural network 
implementations. These two examples represent different cost and size environments but essentially the 
same architectural philosophy. 

3.5.1    General Processing Issues 

To envision the general processing considerations for a digital simulation of a neural network, consider 
a model which specifies complete connection between input and output vectors, each with N compo- 
nents - e.g., auto-association with a distributed representation. Assume that the CPU/memory system 
is arranged with C memory locations primarily associated with each CPU, where C is also the memory 
address capacity of the CPU. Assume, also, that each of the C locations stores a word of W bits (see [10]). 

In a given local memory, one wishes to store the neural network weights corresponding to the vector 
components to be calculated by the CPU associated with that memory. For an auto-associative system, the 
number of weights can be as large as N2. Thus, the capacity of the memory can hold two relationships to 
vector size: 

Case Computational Architecture 
C> N2 

C < N2 
1CPU 
M = [N2]/C CPU's 

Table 3-3. 

Capacity of Network 
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Either one CPU can address sufficient memory to completely store the matrix associated with the sensor 
output vector, or M CPUs are required along with M memories, each with capacity C. Note that the 
required number of CPUs scales with the square of the vector. This is a worst-case estimate because 
of the assumption that the neural network algorithm calls for complete connectivity. For sparse, banded 
connectivity, a considerable reduction in M is possible. 

Each CPU/memory module will be assumed to be described by the parameters listed in Table 3-4 below. 
It is instructive to calculate the time required for a module to compute the matrix-vector process associated 

w CPU/Memory Word Length 
T CPU Clock Time for One Word Execution 
C CPU External Memory Capacity [ AT1 /2] 
M Number of CPU'S used to Calculate 1 Vector 
L Number of Instructions for a Multiply 

Accumulate with Local Memory Access Off Chip 

Rb Data Rate for BUS System between Modules 

Table 3-4. 

Module Parameters 

with its C weights and C* vector components: it is simply the number of multiply-accumulate operations 
times the number of machine cycles for each multiply-accumulate with memory access times the machine 
cycle time. 

ExecutionTime= L * N2 *T = L * C *T. 

Because of the well-structured computations associated with a matrix-vector operation, the number L 
can be quite small. In DSPs, for instance, L = 3 with pipeline access of external memory and pipeline 
accumulation. For MOS technology, T = 200 nSec is typical of high-volume production in 1988. A 
reasonable memory access for a MOS DSP is 64k words, making N = 200 a reasonable estimate for the 
size of the matrix to be stored/executed in a single module. Provided that a large number of modules can 
be afforded, N ^> 200 can be executed in the same 3 * [2002 ] * 200nSec= 24mSec. 

3.5.2    Communications 

The concept of modular communication assumes that the sensor data can be communicated to the mod- 
ules fast enough so as to not slow down the modules significantly. The modular computational rate Rm 

and the system computation rate Rs are given by: 

Rm 

Rs 

W 
L*C*T 

M *W 
L*C*T' 
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Assume that the communication rate would need to be 100 times the computation time for a module 
in order to not "significantly" slow the system (1% of computation time lost for communication). This 
implies a data transmission of M * W * N bits in L * C * T time. The system bus rate Rb must be 100 
times greater than the ratio of these two numbers: 

Rs   =    100 * [- 

=    100 * 

L*C*T 

M*W 
L*N *T 

=    13 Mbits /Sec 

M   -   1. 

This estimate implies that current bus systems can handle the M=l case (e.g., VMEbus) up to M=16 
(e.g., Nubus) cases, or, equivalently, up to the N = 800 component range without starving the modules 
for data. What about the more exotic digital simulators - e.g., the systolic system where M=N and each 
memory stores a row or column of the matrix? Now the data rates move toward the gigabit/sec range - 
clearly beyond the bus systems now in use. This points up an important problem which the simple local 
memory with dedicated processor architecture does not solve: communication load between networks 
becomes severe when the number of processors per network gets as large as the number of components. 
The implication is that the data can no longer be brought in serially when M gets to be the same order 
of magnitude as N. This problem gets totally out of control when one contemplates analog hardware 
for which the computation of the whole matrix-vector product can take place in times on the order of a 
microsecond. The communication issue from the sensor to a single-layer neural network and from layer 
to layer in multi-layer neural networks is a crucial issue for future system architecture research. 

3.5.3    Learning vs. Execution 

Neural network models call for learning as well as execution operations, and it is really the learning 
procedure which is of most interest in this Study. To envision the learning simulation, again consider the 
auto-associative case, learning H vectors with N components with an Hebb learning rule (outer product); 
also return to the local memory/dedicated CPU hardware architecture. Learning takes an input vector and 
creates matrix elements. The important feature of Hebb-like learning rules is that the two matrix element 
indices and matrix element values are uniquely determined by the input vector index and component value: 

change [matrix elementij] = vector, * vectorj 

Note that to compute the ijth matrix element, one only needs the i and jth elements of the input vector. Thus 
one can compartmentalize the learning procedure just as one compartmentalized the execution procedure. 
Consider the case of N=800 with 16 modules and c = C* = 200. The modules would be loaded with 
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different quarters of the input vector in accordance with the prescription below: 

0 < i < c 
0 < j < c 

c < i < 2 c 

0 < ;' < c 

2c < i < 3c 
0 < ;' < c 

3 c < i < 4 c 

0 < j < c 
0 < i < c 
c< j <2c 

c < t < 2 c 

c < ;' < 2 c 

2 c < i < 3 c 

c < ;' < 2 c 

3 c < i < 4 c 

c < i < 2 c 

0 < i < c 
2 c < ;' < 3 c 

c < i < 2 c 

2 c < ;' < 3 c 

2c < i < 3c 

2 c < ;' < 3 c 

3 c < i < 4 c 

2c<;' < 3c 
0 < i < c 

3c < i < Ac 
c < t < 2 c 

3 c < i < 4 c 

2c < i < 3c 
3 c < i < 4 c 

3 c < i < 4 c 

3 c < i < 4 c 

The upper left module can compute matrix elements with indices from 0,0 to c,c. The lower left module 
can compute matrix elements with indices from 0,3c to c,4c. The point is that local memory will again 
suffice, and that the local memory organization is exactly that which is necessary for the execution phase. 

The operations involved in learning are multiplication and summation to an already existing memory 
value in the simplest Hebb case. In more complex cases, such as Widrow-Hoff error-correction learning, 
one wants to compare the vector to be learned with the operation of the previously learned matrix. It is 
proposed that since the fact that the memory organization permits the matrix-vector multiplication, this 
operation be performed in the execution mode of the system. The resultant vector is stored in the CPU 
local memory along with the input vector. The outer product procedure is then performed on the error 
signal. This extra processing will increase L from 3 to perhaps 15, but at no extra cost in memory or CPU 
silicon real estate. Thus it is estimated that the learning of one vector will take on the order of two-to-five 
times longer that execution of one vector, independent of N and independent of initial cost. 

3.6   SUMMARY 

The simulation facilities currently available are limited to software running on general-purpose comput- 
ers or attached processors for micro- and mini-computers. The workstation environment, which includes 
hardware generally under $ 100,000, has the capacity of 10 M multiply-accumulate operations/second, al- 
though the majority of the processing power is under 500 K multiply-accumulate operations/second. The 
recent advent of special-purpose pipeline- and multi-processors accelerators have been the primary reason 
for this surge in capacity. 

Supercomputers and massively parallel machines, such as the Connection Machine and the Cray XMP, 
have the capacity to process up to 80 M multiply-accumulate operations/second. The cost of such process- 
ing power is well over $100,000 and usually over $1 million. The high price tag of these larger machines 
restricts their availability to large industry and government laboratories. 

The growth in processing power will be gradual over the next three years and will be motivated by 
current market forces. The Simulation/Emulation Tools and Techniques Panel expects no new technology 
to create major increases in computation capacity. The development of current technology will provide 
future enhancements. Limitations in accessing large blocks of memory will continue due to the constraints 
on communication bandwidth (i.e. bus speeds). 
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4.   APPLICATION COMPUTATIONAL REQUIREMENTS 

This chapter will attempt to define some of the computational requirements for four typical examples of 
DoD-related problems: signal processing, robotic arm movement, speech, and pattern recognition/vision. 
Using currently investigated algorithms with data rates from functional sensors, an order of magnitude 
estimate of the hardware requirements is ascertained. The Simulation/Emulation Tools and Techniques 
Panel stresses that these requirements are articulated only to place the current simulators in a framework 
of possible DoD needs. 

This chapter will end with a comparison between the DoD examples and currently available hardware 
using storage and multiply-accumulate (interconnects per second) benchmarks. Additional comparisons 
are made with the 11 functional applications presented in detail by the Neural Network Study's System 
Applications Panel in Part IV of this Report. 

4.1    SIGNAL PROCESSING 

A possible application for a neural network is the radar pulse identification problem. Signal traces are 
measured every 50 ^iSec. A trace is divided into 128 bins. One solution technique could be a three-layer 
backpropagation network with 128 hidden units and 128 output units. Full connectivity will be assumed. 
Therefore, there are 384 neurons and 32K interconnections (see Figure 4-1). 

s 
s 

128 128 128 

Figure 4-1.    Signal Processing Application Example. 

The computational requirements for the network shown in Figure 4-1 depend upon the data rate and 
the required number of presentations of a pattern during learning. Therefore, two sets of requirements 
are necessary: one for execution, the other for training. In execution mode, the network must process the 
input trace within 50 /xSec. This leads to a computation rate of 

2 * 128 * 128( interconnects) interconnects 
50 * 10-6(sec) sec 

Many variations of the preceding calculations can be performed for different data rates. The relaxation 
of the realtime performance for developing and testing of the network also changes the computation rate 
values. Table 4-1 contains a list of computational requirements for various levels of development. 
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Training a multi-level network requires repeated presentations of the training set. For this example, 
a typical training set is 250 traces, which can arrive as often as every 5 mSec. The typical number of 
presentations required to train a multi-level backpropagation network is equal to the number of traces in the 
training set. Therefore, the network must process 250 traces 250 times each in 5 mSec. The computation 
rate for such a system is 

250( traces) *250( presentations) * 
2 * 128 * \2S(int) 
5.0 * 10"3(.sec) 

= 380 G 
i id 
.sec 

The training of the network places a computational load on the hardware that is over 600 times that of 
the feedforward execution of the network! A list of computational requirements for various training set 
sizes for development, testing, and realtime performance of the system can be found in Table 4-1. The 

Stage Training Set Iterations Time Requirement 
it c iat ion* 

stcurvL 

Development 
200 
200 

1 
200 

1 hour 
1 hour 

3.5K 
700K 

Testing 
1000 
1000 

1 
1000 

1 hour 
1 hour 

18.4K 
18M 

Execution in Field 
1 1 50 /iSec 625 M 

Learning in Field 
250 250 5 mSec 380G 

Table 4-1. 

Computational Requirements for Signal Processing Application 

requirements for developing and testing a network of the class just described have been met at the current 
stage of available hardware used for network simulation given in Chapter 3. The hardware for the realtime 
execution and learning stages of the system are not currently available. 

4.2    ROBOTICS 

Six-degree arm movement under varying loads is a unique problem that must be solved in robotics. 
There are examples by Albus, Kuperstein, and Reeke in the neural network literature that pose solutions 
to that problem [ 1,8,12], The networks under study can be described as a three-layer network as shown in 
Figure 4-2. The network contains 312 neurons and 3,600 interconnects. Assuming a response time that 
may vary between 1 second and 10 milliseconds (depending upon the dynamics of the robotic arm), the 
computational requirements will be between 3.5K ,r*er

s
c•%cts and 350K inteJ^gd' • Most, if not all, of 

the currently available simulators can meet these requirements. 
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S 

Figure 4-2.    Robotic Arm Mo vement Example. 

4.3 SPEECH 

Isolated Word Recognition (ISW) is an ongoing research effort throughout the United States. One neural 
network approach to the problem is shown in Figure 4-3. An audio signal is first preprocessed to produce 
an 25-element input vector. This is currently done in real-time (every 10 milliseconds) with conventional 
hardware. Each word in the vocabulary consists of a network of 10 neurons. Each of the 25 inputs is 
connected to each neuron in every word. There is also a local connectivity in the 10-neuron network that 
represents a word. Therefore, the connectivity of the network is 

interconnects 
25(inputs) * 10 ; * N(words) = 280N(interconnects). 

word 

The connectivity is a linear function of the number of words in the vocabulary. The training or testing sets 
for the ISW are usually a set of 40 exemplars each for 10 speakers under 10 conditions. This requires that 
there be 4,000 input vectors for each word in the vocabulary. The previous requirement for the number of 
presentations to be equal to the number of input vectors is not required for the this network. The learning 
rules used require approximately five presentations. 

The speech input for a 10,000 word vocabulary represents a training set of 40 million vectors. Since each 
vector arrives every 10 milliseconds, that represents a training set spanning 111 hours of realtime speech! 
Realtime performance may not be sufficient for the development and testing stage of the network. 

A list of the computational requirements for different sized vocabularies and performance time (realtime 
and two-hour, respectively) is given in Table 4-2. 

4.4 PATTERN RECOGNITION - VISION 

Perhaps the most interesting of applications, and among the most useful, is vision. A large amount of 
defense resources is expended on sensors producing imagery using single or multiple wavelengths. Since 
an autonomous vision systems is a worthwhile goal, this section will concentrate on a theoretical model 
of image preprocessing with pattern classification. 
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WORD N-1 WORD N 

10 SPEAKERS. 40 EXEMPLARS.  10 CONDITIONS = 4 K INPUTS/WORD 

REAL TIME  PERFORMANCE (10 ms) = 25(10 x N) + 30N = 280N 

Figure 4-3.    Isolated Word Recognition Example. 

O) 
t 

CM 
O 

Vo, 
100 

•abulary 
1,000 

Size 
10,000 

Interconnects 28K 280K 3M 
Int/sec (RT) 3M 30M 300M 
Int/sec (2 Hours) 1.4M 140M 14G 

Table 4-2. 

Computational Requirements for Speech Application 
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The proposed vision system consists of a segmenter, two image preprocessors, a feature extractor, and 
an associative memory. This system, shown in Figure 4-4, is for two-dimensional rotation- and scale- 
invariant pattern recognition. Table 4-3 lists the components of the system and their respective storage 
and computation requirements. 

Section Neurons Interconnects Cycles 
Input NM 
Segmenter NM 4.9 NM 10 
Sequencer 256 2 

(NM) 
N/A 
N/A 

1 
1 

MRF 256 2 

(NM) 
9 *2562 

9NM 
100 
100 

BCS 1 4 * 12 *2562 

4 * 12 *NM 
20 *4 * 12 *2562 

20 *4 * 12 *NM 
10 
10 

BCS2 4*12 *2562 

4 * 12 *NM 
50 *4 * 12 *2562 

50 *4 * 12 *NM 
10 
10 

BCS 3 4*12 *2562 

4 * 12 * NM 
100 *4 * 12 *2562 

100 *4 * 12 * NM 
10 
10 

Combiner 256 2 

NM 
25 *3 * 12 *2562 

25 * 3 * 12 *NM 
Log/Polar 
FFT 

1282 

1282 
512 * 1282 

2 *7V* 1282 

Feature Map 512 
512 

512 *1282 

512 * 1282 

Associate 
Memory 

10 
10 

512 *10 
512 * 10 

Table 4-3. 

Computation and Storage Requirements for Vision Example 

The total number of neurons, interconnects and interconnect calculations per input becomes 

Neurons =    NM + 147 * 2562 + 1282 + 10 
=    148 *NM+ 1282 + 10 

Interconnects     =   4.9 * NM + 9069 * 2562 + 1024 * 1282 + 5120 
=   4.9 * 7VM+ 9069 * NM + (2N + 512) * 1282 + 5120 

Computations    =   4.9 * NM + 83,400 * 2562 + 1024 * 1282 + 5120 
=   4.9 *NM + 83,400 * NM + {IN + 512) * 1282 + 5120 

where N and M are, respectively, the number of rows and columns in the input image. The values for the 
particular sections are included in order to reflect the approximate number of neurons and interconnects 
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SEQUENCER MRF BCS  2 COMBINER 
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MAP 
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MEMORY 

BCS 3 
3 

Figure 4-4.    Vision Example Schematic. 

necessary to complete the task. The values are shown only to assess an order-of-magnitude computational 
power requirement. The upper row of values for each section, both in the table and in the totals noted 
above, represents the computational power required if the image can be segmented down to a 256-by-256 
pixel region of interest. The lower row contains the power requirements when segmentation cannot be 
done and the entire image must be processed. These two cases, then, are used to bound the computational 
requirements. 

Two examples of imagery that may have use in the DoD community are from Forward Looking InfraRed 
(FLIR) and InfraRed Search and Track (IRST) sensors. The following is a list of pertinent information 
on data rates that have been assumed for the sake of demonstration. 

IRST 

FLIR 

1. 2°by2°FOV 

2. 10 /jrad resolution 

3. 350 pixel by 350 pixel image 

4. 30 frames per second 

1. 4°by360°FOV 

2. 10/irad resolution 

3. 700 pixel by 63,000 pixel image 

4. 1 frame per second 

Using these figures with the equations listed above produces a lower limit of 5 Giga (billion) >nte^°^ct 

and an upper limit of 3 Tera (trillion) interconnects 
second Table 4-4 lists the number of neurons, interconnects, 
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FLIR IRST 
Neurons 9.3 M 

17.3 M 
51.2M 

6224.4 M 
Interconnects 583.4 M 

1079.0 M 
788.9 M 
372.7 G 

Computation Rate 5229.0 M 
9762.7 M 

5434.6 M 
3425.5 G 

Table 4-4. 

Simulation Requirements for Vision System Example 

and computation rates required using the above figures. These figures are for realtime processing and may 
be relaxed for research and development purposes. 

4.5   APPLICATION EXAMPLES AND CURRENT HARDWARE 

The comparison of future simulation requirements with current capabilities is shown in Figure 4-5. 
It is readily seen that the robotic arm example can be implemented with current hardware. The signal 
processing and speech applications can be minimally implemented today; advanced simulation engines 
are needed to completely explore those applications. 

It is not surprising that vision applications are beyond the capabilities of available simulators. Data 
rates for vision sensors are usually much larger than most other sensors and require more processing 
steps. Simulators with an increase in speed and storage capacity in excess of two orders of magnitude 
greater than current systems are required for such applications. 

4.6   COMPUTATIONAL REQUIREMENTS OF CURRENT APPLICATIONS 

The System Applications Panel has focused on 11 applications of neural networks presently in various 
stages of development. This section will list the computational requirements for 10 of them. Every appli- 
cation is implemented using simulators. In fact, all of the simulations are on general-purpose computers. 

The 10 applications are: 

• Widrow's and Tolat's Broom Balancer 

• GTE's Process Monitor 

• Intel's Isolated Word Speech Recognizer 

• Sejnowski's and Gorman's Sonar Target Classifier 

• Nestor's Mortgage Underwriting and Risk Assessment System 
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Figure 4-5.    Hardware Capabilities and Application Example Requirements. 
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• Martin Marietta's Fork Lift Robot 

• Hughes' Autonomous Target Recognizer 

• Lincoln Laboratory's Neocognitron Simulation 

• Kuczewski's Multi-Target Tracking System 

• SAIC's Model Retina. 

The requirements for each of the above applications was computed using the size and update rate required 
by the developer. Table 4-5 lists the parameters used for the calculation and the simulation requirements. 
The requirements are plotted in Figure 4-6 against current simulators. 

1 o 12 

10! 

10' 

103 

- 

BIOLOGICAL 
NETWORKS 

- 

MM 
SIMULATORS 

1                1 | 

10" 10° 

STORAGE (interconnects) 

10! 

Figure 4-6.    Simulation Requirements of Current Applications. 

Although the current requirements are modest, less than 300K lnfe^°"^ct3 , the eventual implementation 
could be more stressed. For example, the Neocognitron, Multitarget Tracking, and Model Retina are all 
using update rates of less than or equal to one per second. These rates are not indicative of fielded systems 
but are limited by the speed of the simulator. These rates would be increased by an order of magnitude 
or more for fielded systems. The ATR application will require processing rates far in excess of the other 
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Application Input Size Update Rate (sec ') Interconnects interconnects 
second 

Broom Balancer 55 10.00 110 IK 
GTE Processor .03 200 <1K 
Speech Recognizer 16 .50 6400 12K 
Sonar 60 4.00 1488 6K 
Mortgage Underwriting .03 4M 14K 
Fork Lift Robot 5.00 100 <1K 
ATR ? ? ? ? 

Neocognitron 16K <.01 200M 100K 
Multitarget Tracking 144 1.00 300K 300K 
Model Retina 64K 1.00 192K 192K 

Table 4-5. 

Computational Requirements for Selected Applications 

applications. That application is currently under study, which explains the absence of definitive numbers 
for that application. 

The bulk of the current work has been limited to systems with modest simulation requirements. There 
are two possible explanations for this trend: the scaling of networks to large applications is not well- 
understood and/or high performance simulation tools are not available. 

4.7    SUMMARY 

Eventual computational needs can be estimated by sizing current and future applications. Current ap- 
plications are restricted to the use of currently available hardware and therefore are modest in size and 
speed requirements. Future applications have been placed into four generic areas: robotics, signal pro- 
cessing, speech, and vision. The vision application was separated further into high data rate and low data 
rate systems. Computation needs ranged from low storage and low speed, to low storage and high speed, 
to high storage and high speed. 

Current hardware cannot meet the requirements of existing neural network algorithms used to address 
speech and vision problems. Although the simulation requirements for signal processing are within the 
capacity of current hardware, realtime requirements for high-speed signals cannot be satisfied. Thus there 
is a need for greater computational capability if the hard application problems outlined in this chapter are 
to be tackled. 
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5.   CONSIDERATIONS FOR FUTURE SIMULATIONS 

5.1    PROJECTIONS OF STANDARD HARDWARE 

One theme which has pervaded the Neural Network Study is that neural network algorithms can be 
considered to be most like the signal processing algorithms which are more familiar to traditional com- 
puter designers. Thus it should come as no surprise that most of the neural network simulators work in a 
traditional signal processor mode, using standard CPUs or application-specific digital signal processors. 
The key to many of these designs is the use of many CPUs with local random access memory. 

If one looks at Figure 4-5, one can see that it is a straightforward process to project the growth of 
the simulator region on the speed-versus-storage-capacity coordinates over time by using projections of 
digital signal processors and random access memory. Both of these semiconductor parts have shown an 
exponential growth in functionality over the past few decades, and technical indications are that another 
order of magnitude in speed and capacity can be expected by the end of this century. This suggests that 
traditional digital simulators will be able to handle all but the very fastest signal processing jobs and 25% 
or more of speech applications as well. Only vision applications appear to be beyond the capability of the 
evolution of current technology during this century. 

5.2   DESIGN CRITERIA 

5.2.1    Processor Speed Versus Memory Access Time 

In the above discussion of technological issues, it is assumed that memory access times will at least 
keep up with the maximum speed of the CPU. This implies, of course, that care be taken in the design 
cycle to insure this. One matter of concern is that the smaller device geometries and larger areas of RAM 
chips means larger resistances in the bus lines of the RAM. This will ultimately limit the access time of 
data due to charging times of the bus lines. 

5.2.2    Processor Speed Versus Memory Access Capacity 

The speed-versus-storage chart indicates that some applications are memory-intensive where lower rates 
are acceptable, while other applications require ultra-fast speeds with limited memory requirements. There 
are two methods for achieving speed - use more processors/memory systems or faster processor/memory 
systems - e.g., GaAs. Care must be taken, of course, that the input bus can support the serial data rate. The 
secret to intensive memory access is sufficient processor address capacity, within the bounds of the local 
memory philosophy. Fortunately, the need for larger address space is well understood by CPU designers. 
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5.2.3   Cycle Time Versus Number of Neurons with Respect to Interconnections/Sec 

This technical issues discussion also assumes that the input data rate is equal to or greater than the 
processing capability of any single-processor memory system. This is generally the case for physical 
neurons which have millisecond processing times. With semiconductor neural network simulations, one 
generally exploits the faster cycle times to compute many nodes in one processor. The problems of interest 
to this Study are sufficiently large in terms of node number, or speed, requirements that there does not 
appear to be need to worry about under-utilizing a single-processor memory system. 

5.3    VISION-CAPABLE SIMULATOR DEVELOPMENT 

The technology for producing high-speed, vision-capable simulators exists. The use of charged-coupled 
device (CCD) technology can produce a single chip multiply/accumulate figure into the 10 9 to 1010 range. 
The number of interconnections that can be addressed on-chip severely limit the size of the networks. Off- 
chip memory can be used with a penalty. 

One example of such a technology is a proposed device consisting of 1,024 CCD multiplying digital- 
to-analog converters (MDACs) with a 10 Mhz clock. This device, shown in Figure 5-1, can produce 
10 G multiply/accumulate operations every second. The input to the chip is an analog stream of neuron 
state values of 8-bit accuracy. The digital weights are stored on-chip, also with 8-bit accuracy, with up 
to 20 weights per neuron state. Therefore the chip, as configured in Figure 5-1, computes the value of 
one neuron (using the upper eight bits of the 16-bit result) with 1,024 interconnects at each cycle and can 
store enough weights for up to 20 neurons. The total capacity of the chip is 20K interconnects. Other 
configurations can be used with the limitation being 20K interconnects. 

The use of off-chip memory can increase the capacity of the system with a penalty in the throughput. 
Obtaining the 8-bit digital weights using 32 parallel lines at a current limit of 100 Mhz requires 

S(bits) * 1024(interconnects) 
 = 2.56 usec. 

32( lines) *\00(Mhz) *     ' 

or the weights can be updated at a rate of 400 Khz. The computations proceed at a rate of 10 Mhz and the 
weights can be read at a rate of 400 Khz. The overall performance decreases by a factor of 25 when using 
off-chip memory. Still, the overall simulation capacity is 400 M int/sec! 

5.4    ACCESS TO DATABASES 

The Study heard from several researchers who felt the need for DARPA to serve as a source of infor- 
mation regarding neural networks. Need was found for algorithms for use by naive users as well as for 
serious databases for testing and teaching big DoD applications. 
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Figure 5-1.    CCD Multiply/Accumulate Accelerator. 
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5.4.1 Algorithms (Standard or NN) 

Software is traditionally considered to be proprietary and/or secret. Thus it would be impossible for 
DARPA to be a source of state-of-the-art software to the general community. There is the simpler case of 
artificial neural network novices wanting to try popular networks on a problem they are expert in - e.g., 
neurobiologists. There is also the desire for well-documented software to be used to judge one hardware 
system versus others. Naturally, such testing need not be proprietary. The desire here is for DARPA to 
serve as a software library, perhaps in the fashion of an electronic bulletin board, as DARPA has analo- 
gously done with the MOSIS foundry. 

5.4.2 Data (Vision, Speech, Signal Processing, etc.) 

The need for easily accessible sensor databases appears to be much more important than the need for 
a software library. DARPA will often find scientists reporting greatly improved software or hardware 
being tested on a particular vendor database. The only way to fairly determine the veracity of such claims 
is to have them demonstrated on a common database reflecting real DoD problems (visible images, IR 
images, laser images, radar tables, etc.) Another need for large databases stems from the requirement of 
large learning systems for very large training sets. This is often cited as one of the requirements of the 
backpropagation method. 

Many research facilities, especially universities, do not have access to such databases. DARPA could 
serve an important need by providing such a service. 
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6.   CONCLUSIONS CONCERNING NEURAL NETWORK 
SIMULATION/EMULATION TOOLS AND TECHNIQUES 

6.1    SUMMARY 

This report focused on the requirements of neural network simulations from the standpoint of algorithm 
development and near-term application implementations. Throughout the report, the Simulation/Emulation 
Tools and Techniques Panel has pointed out that simulations are not one-sided. Two measures of merit 
were selected for comparing simulators, but never was it assumed that these measures cover all possible 
situations. Hardware development has been brisk recently but by no means complete. There remain many 
uncertainties in defining the requirements for neural network simulations. 

Still, there are a number of certainties this Panel can point to. 

Neural network simulations are comprised primarily of multiply-accumulate or interconnect operations. 
For systems of difference, differential, or algebraic equations, the dominant operation is in the intercon- 
nect calculations. The ratio between interconnect and non-interconnect operations can be many orders 
of magnitude. However, the solution techniques for systems not defined by difference equations can be 
critical with respect to their numerical worthiness. The current level of research into the manner in which 
to simulate such systems is high - but generally unused within the neural network community. This Part 
of the Neural Network Study Report outlined a few of the techniques available. 

The current surge in development of hardware and software simulators is encouraging. Taking advan- 
tage of advances in digital signal processing hardware has led to board-level systems to simulate difference 
equation networks. Processor speeds up to five to ten million inte^°^ct3 are not uncommon for micro- 
computer plug-in boards. The use of supercomputer and parallel processor hardware has bridged the 
100 million xrie^^^ct level - but at a significant cost. Such systems are not easily accessible by most 
researchers. 

Software development will continue to keep pace with the hardware development with a finite lag time. 
Commercial software available today allows for small network development at low costs. The commercial 
marketplace and individual needs will drive further development in both the commercial or private arenas. 

One of the reasons for the current advancements in neural networks has been the availability of af- 
fordable, easy-to-use computing facilities. Current applications have exploited these facilities. When the 
capacity of these facilities is compared to possible applications in signal processing, robotics, speech, and 
vision the facilities are deficient. Those problems are hard. The data rates are enormous and on-line learn- 
ing pushes the effective data rates orders-of-magnitude higher. Giga-connection (1 billion "rter

Sg^^cts ) 
simulators with tens of millions of interconnections are needed. 

The next generation of simulators will come from one of three directions: 

• Incremental speed increase in devices, 

• Increase processor parallelism, or 

• New processor technology. 
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Each of these directions will increase the overall throughput of the simulator. Two important restrictions 
can limit the development of ultra- fast computing engines: the available local memory, and capacity 
for local learning. As the number of neurons and interconnects increases with regard to the size of the 
application, the amount of memory required to store the interconnect values increases. If that memory 
cannot be stored locally with every processor, then the processor must access memory external to itself- 
and that slows the overall speed of the simulator. Conversely, if the processor cannot update the weights 
on-chip, then it must access a processor and/or memory off-chip - and that will also slow the processor. 

6.2   CONCLUSIONS 

Simulations will play an important role in the development of neural network algorithms and applica- 
tions. In fact, most short-term applications will be implemented as a simulation. This leads the Simula- 
tion/Emulation Tools and Techniques Panel to suggest that the development of simulation engines specific 
to future application needs should be sponsored. This can be accomplished through the understanding of 
the limitations of current simulators. 

Neural network algorithms are presented in numerous mathematical forms. One of the popular forms 
is as a set of coupled differential equations. Current hardware accelerators used for neural network sim- 
ulations do not easily allow (if at all) the use of such equations. Thus, it is recommended by the Panel 
that the development of hardware and software simulators using the differential equation descriptions be 
encouraged. A natural starting point would be to exploit current parallel processor solution techniques. 

Simulations are primarily used to understand the dynamics of a particular network and for modest imple- 
mentations. As the need for high-speed, low- cost, low-power, and small-size implementations increases, 
so will the need to understand the characteristics of the devices used in these advanced implementations. 
It will be through simulations that the characteristics of implementations are studied and understood. Fu- 
ture simulation requirements must, therefore, account for such simulations of implementations. This type 
of simulation is more demanding than those used chiefly to understand network dynamics or for small- 
scale implementations because the latter type of simulations must encompasses the dynamics of both the 
network and the devices. 

The limitations of the hardware with respect to their possible applications must be overcome if research 
in those areas (signal processing, speech, and vision) are to be explored. Hardware accelerators that ad- 
dress the current bottlenecks in the size of the networks (memory) and training time (learning) need to be 
developed. Two orders of magnitude of increased capacity (both in speed and storage) is necessary to 
allow the development of large-scale applications; it is advised that such hardware and software devel- 
opments be pursued. 

The availability of high-end simulation tools to the neural network research community is critical for 
the development of near-term applications. Many researchers throughout the study noted that the lack of 
inexpensive and easily accessible simulation facilities inhibit their research. Current hardware accelerators 
have brought a significant increase in computational power to researchers. However, if the development 
of neural network capability in signal processing, speech, and vision applications become a focal point of 
DoD interest, then simulation facilities beyond hardware accelerators are necessary for researchers; so 
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the Simulation/Emulation Tools and Techniques Panel recommends that access to high-end computational 
facilities be available for large network (e.g., vision) research and development. 
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APPENDIX   A 
PARALLEL PROCESSING HARDWARE 

A.l    BUTTERFLY 

The Butterfly Parallel Processing Computer is a product of Bolt Beranek and Newman, Inc. The basic 
configuration of this MIMD computer starts with four processors; it can be expanded in single-processor 
increments to 256 processors which yield up to 250 MIPS. It has a butterfly switch for interconnecting all 
processors described below. 

Each processor and its memory are located on a single board called a Processor Node (PN), which is the 
basic computing element of the Butterfly computer. Each PN uses a standard Motorola MC68020 micro- 
processor, capable of executing one million instructions per second. The microprocessor is augmented by 
the MC68881 floating point computational unit. Each PN also contains a microcoded control processor 
that provides inter-processor communication, synchronization, and support for parallel processing. 

Each node may have memory size from one Mbyte to four Mbytes, with a maximum system-wide shared 
memory of one Gbyte. It can independently execute its own sequence of instructions, referencing data as 
specified by the instructions. Though memory is local to the PNs, each processor can access remotely any 
memory in the system using the Butterfly switch. 

The Butterfly switch implements inter-processor communication using techniques similar to packet 
switching. Its topology is similar to that of the Fast Fourier Transform Butterfly and it implements a subset 
of the hypercube network. The switch has a latency log2 N and the bandwidth through each processor-to- 
processor path in the switch is 32 Mbits/second. 

The Butterfly I/O system is distributed among the PNs. Any node can have an I/O board that supports 
data transfer at a maximum rate of two Mbytes/second. 

Butterfly application software development is done on a DEC VAX or Sun Microsystems workstation 
running Berkeley 4.2 UNIX. The system supports C and FORTRAN 77. A multiprocessing Common LISP 
system that will be compatible with the Symbolic 3600 series of LISP workstations is under development. 

A.2   CAPP 

The Content Addressable Parallel Processor (CAPP) is an SIMD computer built at the University of 
Massachusetts. Its goal is to explore the applications of content addressability and parallelism. It also 
serves as an interface between the host and secondary data storage devices. The central control unit is 
pipelined and instructions can be prefetched. It contains a ROM with commonly needed micro-coded 
instructions and a small program memory for storing user programs. 

The parallel processor contains 262,144 cells arranged as a 512-by-512 array. Each cell consists of 32 
bits of static memory, an ALU, and four one-bit static tags. One of the tags controls whether the cell is 
active. 
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Cells are connected to their nearest four neighbors. Because the pin count on the chip is limited, an 8:1 
multiplexing scheme was used for communication between chips. Cells on the edge are processed in three 
ways, first as dead edges connecting no neighbor; secondly, wrapped around; or, third, wrapping around 
but offset by one cell to make a linear array. 

A.3    CONNECTION MACHINE 

Thinking Machines Corp. builds the Connection Machine computer, which has 65,536 processors pro- 
vides a raw computing power of 1,000 MIPS. The computer an be configured to a much larger number of 
logical processors by creating a two-dimensional array of virtual processors on each physical processors. 

The computer can be divided into four equal subparts. Each works at a separate front end, and each has 
a separate instruction stream executing in a quarter of the system's processors. Thus it becomes a MSIMD 
computer. 

Each processor is a bit-serial processor that opens onto two data values specified by each instruction. 
It has four Kbytes of memory (32 Mbytes for the computer. The memory is divided into a data area and a 
start area, and it is bit-addressable. Sixteen physical processors are grouped on a chip. 

The CM has two ways of communicating between processors: first, it is wired to its neighbors to the 
north, east, west, and south by the NEWS network; second, a "Boolean n-cube" network, the Connection 
Machine Router, connects each of the 65,536 physical processors to 16 other physical processors whose 
binary addresses are different in just one of the 16 bits. The Router allows a full message to be sent from 
any processors to 16 other physical processors whose binary addresses are different in just one of the 16 
bits. The Router allows a full message to be sent from any processor to any other. The sender processor 
simply needs to know the address of the destination processor. 

Data are exchanged between memory and the front end in three ways. "Read-slice" reads a single bit 
from the memory of each of series of consecutive processors. "Read-processor" moves a single field 
between the front end and a single processor. "Read-array" moves fields between the front end and set of 
contiguous processors. 

A microcontroller expands macro-instruction from the front end into nano-instructions, which are broad- 
cast to all virtual processors. Processors have the option of "sitting out" some instructions, depending on 
the one-bit Context Flag in each processor. 

The Connection Machine provides an assembly-level language REL-2. It also supports parallel versions 
of C and LISP. 

A.4    GAPP 

The Geometric Array Parallel Processor, GAPP, was originally developed by the Martin Marietta Corp. 
and marketed commercially by NCR Corp.'s Microelectronics Division. It is a SIMD processor with 
6-by-12 processing elements (PEs). 
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Each of the PEs contains an 1-bit ALU, 128 bits of RAM, and four registers. It operates with a 10 
MHz clock and takes 25 clock cycles to add two 8-bit numbers. With all the PEs running, the processor 
can deliver 921 million additions per second. Seventy-two PEs are arranged in a 6-by-12 array in the 
current version of the chip. The chip is fabricated with a 3-/im double layer metal CMOS process, and it 
is currently housed in a ceramic 84-lead pin-grid array. 

Connecting each PE to its neighbors on the north, south, east, and west are bidirectional communication 
lines. In addition, a separate I/O communication bus allows data to be input from the south end of the 
array and output to the north without interfering with computations within the ALU. 

The implementation of a control store lets the processor receive a set of instructions from the host and 
stores them, freeing the host for other tasks. The control store operates in conjunction with a sequence, 
which watches for and maintains the correct sequence as the processor performs its instructions. 

The processor is programmed with a sequence of instructions that, when compiled by an assembler, 
directs the appropriate control signals to every cell in the array. Up to five commands (four for each of 
the four registers and one for the RAM) can be executed simultaneously on every instruction cycle. A 
software library of macro-cells forms the basis of a high-level command set for the processor. 

A.5    iPSC 

Intel Scientific Computers offers the iPSC as a multiprocessor system that can operate concurrently 
with as many as 128 independent processing units connected as a hypercube network. 

Each node of the cube is a board-level microcomputer with high-speed versions of the Intel 80286/80287 
microcomputer chip sets. It has its own memory 512 Kbytes, expandable to 4.5 Mbytes. Each node also 
contains eight bidirectional communication channels managed by dedicated communication co-processors. 
Seven of these channels are physically linked to other nodes and serve as dedicated channels. The eighth 
channel is a global Ethernet channel that provides direct access to and from the Cube manager for program 
loading, data I/O, and diagnosis. It has a 10-Mbit/second channel for internode serial communication. 

The cube manager provides a high-level interface. It serves as the local host for the cube and provides the 
communication/control software and the system diagnostic facility. It runs the XENIX operating system, 
a version of UNIX, with LISP, FORTRAN, C, and Assembly language. 

The iPSC-VX is a vector concurrent system built upon the basic architecture of iPSC. It couples a high- 
performance vector processor to each iPSC processing node, thus yielding a peak performance of 1,280 
MFLOPS (on 32-bit data, or 424 MFLOPS on 64-bit data) on a 64-node iPSC-VX/64 version. Each node 
consists of 1.5 Mbytes, giving the whole system 96 Mbytes of memory. 

A.6    MASSIVELY PARALLEL PROCESSOR 

The Massively Parallel Processor (MPP) is a bit-serial SIMD parallel processing computer built for the 
NASA Goddard Space Flight Center by Goodyear Aerospace Corp. It has 16,384 processing elements 
(PEs). 
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The major blocks in the MPP are the array unit, array control unit, staging memory, program and data 
management unit, and an interface to the host. 

Logically, the array unit contains 16,384 PEs arranged in a 128 row-by-128 column square array. Phys- 
ically, the array unit contains an extra 128 row-by-4 column rectangle of PEs for redundancy. When a 
faulty PE is discovered, the processor bypasses all the PEs in that column (or row), and the topology is 
not disturbed. 

Each PE is a bit-serial processor which uses a full adder and a shift register for arithmetic. Each PE has 
a RAM storing 1,024 bits. The address lines of all PEs are tied together so that memories are accessed by 
a bit-plane accessed by each PE. The PE memory can be expanded to 65,536 bits per PE or to 128 Mbytes 
total. The basic cycle time of the PE is 100ns. With all PEs operating in parallel, it delivers 3,000 MOPS 
for integer addition and 400 MFLOPS for floating point addition. 

Each PE communicates with its four nearest neighbors. The edge connection is programmable. Be- 
tween the top and bottom edges of the array unit, one can either connect them together to make the array 
look like a cylinder or separate them to make that array look like a plane. Similarly, the left and right 
edges an be independently connected together, or separated. When the left and right edges are connected 
together, one can either connect corresponding rows together or slide the connection by one row so the 
left PE of row i communicates with the right PE row i+1. Thus rows are connected together in a spiral 
fashion like a long linear string. 

The array control unit has three submits - the PE control unit (PCU) controls processing in the array 
unit, the I/O control unit manages flow of I/O data through the array unit, and the main control unit (MCU) 
runs application programs, performs necessary scalar processing, and controls the other two subunits. The 
division of responsibility allows array processing, scalar processing, and I/O to proceed simultaneously. 

The staging memory buffers and reorders the bit-serial format of the array unit to the word format of 
the outside world. Data can be input at a rate of 160 Mbytes/second. An I/O rate of 320 Mbytes/second 
can be achieved when input and output proceed simultaneously. 

The program and data management unit controls the overall flow of program and data in and out of 
the MPP. It also handles program development and diagnostics. It is implemented on a DEC PDP-11 
minicomputer operating under DEC's RSX-11M realtime multiprogramming system. 

A.7    RP3 

Research Parallel Processor Project (RP3) was initiated at IBM. It is designed as a parallel MIMD com- 
puter for investigating both hardware and software aspects of parallel computation. It can be configured 
as both shared memory and local memory message passing paradigms, as well as mixtures of the two. 

RP3 is designed to have up to 512 processor/memory elements (PME) with an interconnection network. 
A full system is expected to provide up to 1.3 GIPS, 800 MFLOPS, 1-2 Gbytes of main storage, 192- 
Mbyte/second I/O rate, and 13-Gbyte/second interprocessor communication capability. 

Each PME contains a 32-bit processor, 4 Mbytes of memory, a 32-Kbyte cache, a floating-point unit, 
and an interface to the I/O and Support Processor (ISP). The RP3 processor is a proprietary design based 
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on the philosophy that all instructions should be completed in a single cycle. But unlike other RISC 
architectures, it interlocks internally in hardware. The PME provides a memory mapping function as part 
of address translation and allows memory to be dynamically partitioned between global and local memory. 

The RP3 interconnection network is composed of two networks. One provides low latency, and the other 
has the ability to combine messages directed to the same memory location. The low latency network is 
similar to an Omega network but provides dual source-sink paths. 

A.8    WARP 

Warp is a MIMD one-dimensional systolic array computer being designed and built at Carnegie Mellon 
University. It consists of 10 identical cells in a linear array and delivers a peak performance of 100 
MFLOPS. 

Each cell contains two floating point processors, one ALU, and one multiplier. The processors are 
pipelined, and each can deliver up to 5 MFLOPS. 

An operand register file is dedicated to each arithmetic processing units to ensure that data can be 
supplied at the rate they are consumed. Within each cell, a crossbar is used to support high intra-cell 
bandwidth. 

Every cell contains 4K of 152-bit word micro-store and 4K of 32-bit RAM as well as other registers to 
provide sufficient control. Each cell can be programmed individually to execute a different computation. 

Data flow through the array on two data paths while addresses and control signals travel on the address 
path. Each input data path has a queue to buffer input data. 

As interface unit handles I/O between array and the host and performs data conversion. Addresses for 
data and control signals are generated but the interface unit and are propagated from cell to cell. 

Warp is designed to interface with a VAX 11/780 through an interface computer which provides 1 Mbyte 
of memory and a 24-Mbyte/second bandwidth. The host is responsible for carrying out high-level appli- 
cation routines and supplying data to the WARP. 
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APPENDIX    B 
SIMULATION QUESTIONNAIRE RESULTS 

SIMULATOR NAME: AI-NET 
COMPANY: AI WARE Inc. 
HOST MACHINES: IBM PC/AT 
LANGUAGE BASED ON: "C" 
ALGORITHMS IMPLEMENTED: BEP 
INTERNAL/COMMERCIAL: Commercial 
SPECIFIC/GENERAL: General 
USER FRIENDLY: 
PRICE: $1500 
NOTES: Accelerator Board for $3000 

SIMULATOR NAME: BehavHeuristics Adaptive Network Knowledge Engineering 
COMPANY: BehavHerTool 
HOST MACHINES: Sun, Apollo, Tektronics Workstations; Macintosh II 
LANGUAGE BASED ON: 
ALGORITHMS IMPLEMENTED: 
INTERNAL/COMMERCIAL: Commercial 
SPECIFIC/GENERAL: General 
USER FRIENDLY: 
PRICE: 
NOTES: To be on CM and Symbolic 36xx 

SIMULATOR NAME: Netwurkz 
COMPANY: DAIR Computer Systems 
HOST MACHINES: IBM PC/XT/AT, 2 
LANGUAGE BASED ON: PL/D 
ALGORITHMS IMPLEMENTED: 
INTERNAL/COMMERCIAL: Commercial 
SPECIFIC/GENERAL: General 
USER FRIENDLY: 
PRICE: $80 
NOTES: 
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SIMULATOR NAME: Hughes International Simulator 
COMPANY: Hughes Aircraft Company 
HOST MACHINES: IBM PC/AT 
LANGUAGE BASED ON: 
ALGORITHMS IMPLEMENTED: 
INTERNAL/COMMERCIAL: Internal 
SPECIFIC/GENERAL: Specific 
USER FRIENDLY: 
PRICE: 
NOTES: 

SIMULATOR NAME: ? 
COMPANY: Loral Systems Group 
HOST MACHINES: Loral Aspro 
LANGUAGE BASED ON: 
ALGORITHMS IMPLEMENTED: BEP 
INTERNAL/COMMERCIAL: Internal 
SPECIFIC/GENERAL: Specific 
USER FRIENDLY: 
PRICE: 
NOTES: 

SIMULATOR NAME: Autocode 
COMPANY: Los Alamos National Laboratory 
HOST MACHINES: Cray 
LANGUAGE BASED ON: FORTRAN 
ALGORITHMS IMPLEMENTED: BEP 
INTERNAL/COMMERCIAL: Internal 
SPECIFIC/GENERAL: Specific 
USER FRIENDLY: 
PRICE: 
NOTES: 
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SIMULATOR NAME: Syspro 
COMPANY: Martingale Research 
HOST MACHINES: IBM PC/XT/AT, MassComp MC5xxx 
LANGUAGE BASED ON: Fortran 
ALGORITHMS IMPLEMENTED: 
INTERNAL/COMMERCIAL: Commercial 
SPECIFIC/GENERAL: General 
USER FRIENDLY: 
PRICE: $1,000 
NOTES: Neural Language 

SIMULATOR NAME: Nestor Development System 
COMPANY: Nestor, Inc. 
HOST MACHINES: IBM PC/AT; Apollo and Sun Workstations 
LANGUAGE BASED ON: 
ALGORITHMS IMPLEMENTED: RCE 
INTERNAL/COMMERCIAL: Commercial 
SPECIFIC/GENERAL: Specific 
USER FRIENDLY: 
PRICE: $20,000 
NOTES: 

SIMULATOR NAME: Plato/Aristotle 
COMPANY: Neuraltech 
HOST MACHINES: General Purpose Computers 286/386 to Cray 
LANGUAGE BASED ON: "C" 
ALGORITHMS IMPLEMENTED: 
INTERNAL/COMMERCIAL: Commercial 
SPECIFIC/GENERAL: General 
USER FRIENDLY: 
PRICE: $2,000 (Lease) 
NOTES: Neural Language 
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SIMULATOR NAME: Neural Works Professional 
COMPANY: NeuralWare 
HOST MACHINES: IBM PC/XT/AT 
LANGUAGE BASED ON: "C" 
ALGORITHMS IMPLEMENTED: Hopfield, BSB, Adeline, Feature Maps, BEP Perceptron 
INTERNAL/COMMERCIAL: Commercial 
SPECIFIC/GENERAL: General 
USER FRIENDLY: 
PRICE: $495 
NOTES: 

SIMULATOR NAME: GINNI 
COMPANY: SAIC 
HOST MACHINES: Symbolics 36xx 
LANGUAGE BASED ON: LISP 
ALGORITHMS IMPLEMENTED: 
INTERNAL/COMMERCIAL: Internal 
SPECIFIC/GENERAL: General 
USER FRIENDLY: 
PRICE: 
NOTES: Development Environment 

SIMULATOR NAME: Neural Network Workstation 
COMPANY: Texas Instruments 
HOST MACHINES: Explorer/Odyssey 
LANGUAGE BASED ON: LISP 
ALGORITHMS IMPLEMENTED: Hopfield, BSB, BEP, ART II 
INTERNAL/COMMERCIAL: Commercial 
SPECIFIC/GENERAL: General 
USER FRIENDLY: 
PRICE: Free with Explorer 
NOTES: 
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SIMULATOR NAME: Motion Detection 
COMPANY: Xerox Palo Alto Research Center 
HOST MACHINES: VAX; IBM PC; InterLisp-D Machines; Macintosh 
LANGUAGE BASED ON: LISP 
ALGORITHMS IMPLEMENTED: Custom 
INTERNAL/COMMERCIAL: Internal 
SPECIFIC/GENERAL: Specific 
USER FRIENDLY: 
PRICE: 
NOTES: 

SIMULATOR NAME: PRISM 
COMPANY: Xerox Palo Alto Research Center 
HOST MACHINES: VAX, IBM PC; InterLisp-D Machines 
LANGUAGE BASED ON: LISP 
ALGORITHMS IMPLEMENTED: Custom 
INTERNAL/COMMERCIAL: Internal 
SPECIFIC/GENERAL: Specific 
USER FRIENDLY: 
PRICE: 
NOTES: 
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1.   OVERVIEW 

Just as neural networks offer a radically different approach to information processing, so they offer 
radically different opportunities for advanced implementation techniques. In many comparisons between 
neural networks and alternative solutions to problems, the mistake is made of overlooking technology 
issues in the comparison. For example, neural networks are generally studied using computer simulations, 
and the comparisons to alternative algorithmic solutions are often made in terms of the computation times 
required by each approach. Such comparisons are not relevant, however, when advanced implementations 
can give special computational advantages to neural networks. Thus implementation technology is a 
critical part of the neural network research picture. 

Neural networks can be implemented using conventional digital VLSI. However, the special character- 
istics of neural networks appear to be a natural match to other implementation approaches that may offer 
unique advantages. One of these approaches makes use of analog techniques that perform physical rather 
than symbolic computations. These techniques allow computations with massive amounts of data to be 
performed extremely rapidly and with very little hardware. For example, Kirchoff's Law can be used to 
compute the sum of hundreds of values represented by electrical currents by allowing those currents to 
flow onto a common wire. The entire summation is performed in a single operation using a device - a 
conducting line - that takes up less chip area than the power supply line of a digital processor. Moreover, 
synapses can store analog weights in a single device, while digital weights require one device per bit. This 
may further increase the number of synapses and neurons that can be implemented in a single component. 

On the other hand, analog neural network circuitry does not afford the accuracy of symbolic circuitry. 
Adaptive learning in neural networks may provide a feedback mechanism that can, in effect, calibrate 
the analog circuitry and result in high effective accuracy. Relatively little research has addressed these 
issues so far, and it is not yet clear whether the potential advantages of analog processing techniques will 
be borne out in practice and whether those advantages will be great enough to outweigh the advantage 
offered by digital technology, which has reached a high state of development and which will continue to 
be strongly driven by other applications. 

Two technologies appear to offer particular promise for advanced network implementations: electronics 
and optics. Electronics, even analog electronics, is relatively well-developed and can readily provide 
flexible, well-controlled nonlinear characteristics. On the other hand, electronic circuits, being confined 
to a plane, can support only a relatively small number of neurons and synapses in a single component 
(< 10 6). They are also constrained in the types of connectivity that can be achieved. The two extremes 
of fully-connected networks and nearest-neighbor-connected networks can be implemented efficiently in 
integrated circuits; intermediate connectivity patterns, however, pose a problem. 

Optical and electro-optical devices are considerably less well developed than electronic devices but 
offer potentially much larger numbers of neurons and synapses per component (perhaps as high as 1010). 
Optics can support more flexible connectivity patterns and can provide long-distance interconnects with- 
out capacitive or inductive crosstalk and loading. Optics is particularly well-suited to space-invariant 
connectivity, where the connection weight between any pair of neurons depends only on their relative 
geometric positions. Many vision and image processing network architectures require precisely this kind 
of connectivity. 
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A number of experimental efforts have been undertaken to explore advanced implementation approaches 
to neural networks. Few of these efforts have been well-funded; most have been pursued as a sideline or at 
a very low level of effort. Since a significant part of the practical advantage potentially offered by neural 
networks depends on their successful implementation using advanced technologies, technology develop- 
ment should be an essential element in any neural network research program. In addition, theoretical 
studies that take into account implementation issues - such as device imperfections and variations - need 
to be encouraged. 

1.1    CONTENTS OF REPORT 

This Part of the Neural Network Study's Technical Report - that concerned with Advanced Implemen- 
tation Technology - comprises four chapters. The first sets forth the charter of this panel and indicates why 
implementation is an important subject within the field of neural network research. The second chapter 
presents a discussion of general and philosophical issues relating to advanced implementations of neural 
networks in technologies available at this time and in the foreseeable future. The third chapter is a sum- 
mary of current implementation efforts, including devices that have been demonstrated, devices that are 
under development now, and some devices that have been proposed based on existing technology. The fi- 
nal chapter summarizes the findings of the Neural Network Study's Advanced Implementation Technology 
Panel and presents its recommendations for future research. 

1.2    THE PANEL CHARTER 

As the name of this Panel indicates, its charter has been to examine the application of advanced imple- 
mentation technology to the fabrication of artificial neural networks. This definition has several important 
consequences. 

First, implementation of neural networks is, by definition, an engineering issue. Many questions, al- 
though of great interest in general, are not the concern of this panel. Among these are questions of biolog- 
ical fidelity and even whether the neural network provides an adequate solution to any particular problem. 
Nevertheless, implementation researchers, like others in the neural network field, are generally motivated 
by and interested in biological nervous systems, and there will likely be important cross-fertilization be- 
tween implementation research and biological research. Carver Mead, in particular, views his implemen- 
tation research as "artificial biology" and feels that important clues to how biological systems work will 
arise from the effort to produce artificial neural systems. 

The Panel's title - Advanced Implementation Technology - has been taken to exclude consideration 
of implementations of neural networks in either software or conventional or general-purpose integrated 
circuits. Those areas have been considered to fall within the domain of the Simulation/Emulation Tools 
and Techniques Panel (Panel 3). This Panel has focused its attention on devices where the implementation 
takes advantage in some way of the natural topology of neural networks. This does not mean that only 
novel device technologies or only fully parallel implementations have been considered. Conventional 
digital VLSI may offer the best implementation vehicle, and systolic and other partially serial architectures 



can be applied effectively to neural network implementation, as some of the work surveyed in Chapter 3 
and in Appendix A indicates. 

The work of this Panel is predicated on the assumption that neural networks will prove to offer solutions 
to important problems and that one will want to implement those solutions in a form that can exploit the 
advantages offered by neural networks. Among these are very high throughput (realtime operation) as a 
result of massive parallelism; small size; and low power consumption. 

1.3 CONNECTION TO OTHER NEURAL NETWORK RESEARCH 

Implementation research has generally been regarded as being concerned only with end-use applications 
of neural networks after theoretical research has demonstrated that they offer a practical solution to a 
problem. This is too narrow a view. 

As a result of this view, almost all research into model development has considered mathematical equa- 
tions and computer simulations of perfect networks. All neurons and synapses in the network are assumed 
to be described by the same equations. Fluctuations from neuron to neuron and synapse to synapse (vari- 
ation) and within a given neuron or synapse (noise) have been almost entirely neglected. 

Both real biological networks and networks built with man-made technology exhibit variation and noise. 
That neural networks will not be significantly affected by these characteristics is often asserted as a matter 
of faith. Robustness of neural networks in the face of component variation and noise may be a critical fac- 
tor for implementation technology. It is, therefore, important for theoretical research to begin to take into 
account these characteristics. Network models that can perform a desired function but lack this robustness 
may not be able to meet the requirements of a practical application. 

From an implementation point of view, one of the aims of neural networks is to achieve accurate, low 
noise information processing with components that, individually, may be inaccurate and noisy. This, 
interestingly enough, is the same goal that digital processing systems achieve. Digital processors achieve 
the goal at the device level by (1) using transistors as bistable devices and (2) representing the data in 
symbolic digital form. Neural networks aim to achieve the goal at a system level as a result of adaptation 
and learning. 

1.4 IMPLEMENTATION USING CONVENTIONAL HARDWARE 

Although the Advanced Implementation Technology Panel is concerned with advanced implementa- 
tion, this discussion will gain perspective if some characteristics of neural networks implemented using 
conventional digital integrated circuit technology, which generally offers shorter development cycles, is 
briefly considered. 

In a digital implementation of a neural network, there are three functions which dominate the processing: 

• Generating sums of weighted inputs; 

• Updating the weights during adaptation; and 



• Passing data (from inputs and intermediate layer outputs) to the neural elements. 

In addition to these functions, the system may need to implement nonlinear transformations of the sums, 
determine adaptation parameters, etc. 

A digital realization may be either sequential or parallel in nature, or may have a mixture of sequential 
and parallel elements. For example, if a standard microprocessor is used as the basis of an implementation, 
the program it executes represents a sequential operation. If a single processor is not sufficient to achieve 
a desired performance goal, a system may have several such sequential processors operating in parallel. 

Sequential realizations have the advantage that costly components, such as multipliers, are time-shared 
among many weights. However this sharing slows down the system and may affect reliability. One of the 
expected advantages of neural networks is reduced sensitivity to individual component failures. However, 
if one building block is shared among many weights or many neurons, the failure of that building block 
could be catastrophic in that the system may not have sufficient reserves left to be able to correct by 
adaptation. 

A fully parallel realization may be possible, using gate-arrays or custom chips, if the need for multi- 
plication and high-resolution addition can be eliminated. If the neural network uses binary variables as 
signals between neural elements, the multiply/accumulate operations are reduced to single-bit add/subtract 
decisions. Hard-threshold neural elements are therefore to be preferred over those using sigmoid func- 
tions. 

As one measure of the performance of a neural network implementation, consider the number of weight- 
ing operations performed per second. A general-purpose microprocessor will typically be capable of from 
105 to 106 weight-operations per second. However, with the use of non-binary variables, this perfor- 
mance may be reduced by as much as an order of magnitude because of the time required for multiplica- 
tions. 

Digital signal processing microprocessors (DSPs) will offer higher performance, particularly when non- 
binary variables are used. These devices usually contain parallel multipliers and may allow performance 
in excess of 106 weight-operations per second, even with non-binary variables. DSP's are also more 
self-contained than most general-purpose microprocessors in that they usually contain program ROM or 
EPROM and a certain amount of data memory. When building parallel systems, this self-contained nature 
allows the packing of more processors into a given volume. 

To achieve performance beyond that available with microprocessors, the designer may consider special- 
purpose hardware. If built with off-the-shelf components, such hardware may offer higher speeds, but at 
the cost of additional packages of logic. Because the most important operations are addition/subtraction 
and/or multiplication, common timing and control might be used to drive a large number of simple proces- 
sors consisting primarily of memory and multiply/accumulate chips. Each such module should achieve 
performance beyond 107 weight-operations per second. 

The highest performance can be expected from semi-custom or fully custom integrated circuits. A fully 
parallel system might be made using an array of flip-flops for each weight. Associated with each weight 
is also a multi-bit adder which is used during adaptation to add (or subtract) an increment to (or from) the 



weight. During the summation process, multiplexers rearrange some of the adder connections to make a 
fully parallel summation unit. 

Using an assumption that (1) each weight bit requires some 20 transistors, (2) the average full-adder 
bit requires some 40 transistors, and (3) multiplexing requires some 15 transistors per bit, the total be- 
comes approximately 75 transistors per bit. Assuming 10-bit weights, a figure of about 750 transistors 
per weight is arrived at. Today's technology may permit several hundred thousand transistors per chip, so 
one could expect to realize perhaps 200 or more weights per chip. If a propagation time in the order of 
20 nanoseconds could be achieved, the performance would approach 10l0 weight-operations per second. 
Thus it would appear that better use of today's technology could achieve at least three orders of magnitude 
improvement in performance per unit volume of hardware over conventional simulation on microproces- 
sors. This performance figure is borne out by the projections for the AT&T all-digital Hamming network 
described in Appendix A.l. 

1.5    ADVANCED TECHNOLOGY NEURAL NETWORKS FOR SIMULATION 

The ultimate purpose of advanced-technology implementations of neural networks is to serve high- 
performance end-use applications. However, as an intermediate step, they might also be of use as copro- 
cessors in advanced neural network simulators. 

There are some serious limitations to this application. Most advanced- technology implementations 
directly exploit the architecture and topology of a neural network model. Thus, they will generally be 
highly model-dependent and will not offer the flexibility desired in general-purpose simulation tools. 

Secondly, simulations must normally allow precise specification of the parameters of the model under 
study and must include only the effects of features explicitly included in the model. Effects introduced by 
features of the hardware used to perform the simulation are not desirable. This is precisely the attraction 
of digital computers: with the exception of effects due to limited numerical precision, the computation 
follows perfectly the specifications expressed in the program. With advanced-technology neural network 
implementations, noise and imperfections in the device itself will contribute in an inseparable way to the 
result. 

For example, one of the applications of simulation tools should be to study the effect on neural network 
performance of noise and component imperfections. In such a study, one must have precise control over 
the types and magnitudes of the noise and imperfections. Simulators based on actual neural network 
devices would experience noise and imperfections that could not be controlled. 

Thus advanced simulators will in many cases want to make use of special purpose integrated circuit 
devices based on conventional digital technology. However, as studies advance — as surely they soon 
will — to the point where they deal with very large networks, digital simulation of the entire network 
will become nearly impossible because of the number of computations required. In such cases, advanced 
neural network devices will be essential for investigating the gross behaviors of particular network models 
in order to develop intuition about the performance of the network or to determine, for example, the ranges 
of parameters that result in interesting or useful behavior. Time-consuming digital simulations can then 
focus on just the problems of interest. 



2.   GENERAL AND PHILOSOPHICAL ISSUES 

In the course of this Study, considerable thought has been given by all of the panels to several fun- 
damental questions, and several of the panels have attempted to answer those questions from their own 
particular perspectives. The key questions are: 

• What are neural networks? 

• What tasks do they attempt to perform? 

• What is distinctive or unique about the ways in which they attempt to perform these 
tasks? 

This chapter looks at the answers to these questions as they apply to advanced implementation technol- 
ogy for neural networks. The discussion will lead to three specific important technical issues relating to 
implementation: 

• The connectivity limitations inherent in the various approaches; 

• The appropriate roles for analog, digital, and mixed circuitry; and 

• The role that learning can play. 

2.1    THE NEURAL NETWORK DEFINITION 

The working definition of a neural network adopted for this Study was presented in Part I, Chapter 
2, Figure 2-3 of this Report (the definition is presented also in Part I, Appendix B: A Neural Network 
Glossary of Terms and discussed in detail in Part II: Adaptive Knowledge Processing, Chapters I and 2). 
The elements of that definition can be viewed specifically from an implementation viewpoint, allowing 
identification of the essential components required in a network implementation, the basic characteristics 
of those elements, and the features of neural networks that lead to special forms of implementation. 

2.1.1    Connection to Biology 

This discussion will begin with the last clause of the definition, the one relating to inspiration from bio- 
logical networks. Implementors, like others involved in neural network research, are often inspired by the 
biological nervous system and the processing feats it can accomplish. Both network model development 
(addressed by the Adaptive Knowledge Processing Panel - see Part II of this Report) and simulations (ad- 
dressed by the Simulation/Emulation Tools and Techniques Panel - see Part V of this Report) contribute 
in an important way to the study of biology as well as to the development of engineering applications. 
This is generally not true of advanced implementation technology, where the overwhelming interest is in 



building practical information processing systems that meet requirements for realtime operation at low 
power and in a compact package. 

There are some exceptions. For example, some of the work of Carver Mead and his students at the Cali- 
fornia Institute of Technology is attempting to elucidate the sensory preprocessing performed in biological 
systems by studying engineering systems modeled after them. 

2.1.2    Many Simple Processors 

The first clause of the definition indicates that a neural network performs its computations using a large 
number of simple processors. This is quite different from what is done in conventional computers, which 
depend on small numbers of extremely powerful, highly sophisticated, complex processing units. 

In recent years, there has been a lively discussion concerning the appropriate level of complexity in 
the central processing units of digital computers, from microcomputers to mainframes. A new school of 
thought has been arguing for computers with central processing units that execute a smaller than usual set 
of fundamental, simple operations. These computers are identified by the acronym RISC, for "reduced 
instruction set computer." 

A second trend has been to get around the speed limit imposed by serial operation by building computers 
with multiple processors, the number ranging from several (as in the Cray machines) to tens of thousands 
(as in the Connection Machine). 

Neural networks represent the limit of thinking in this direction. The processors are so simple that 
as many as several hundred thousand have been implemented on a single integrated circuit. With these 
processors functioning totally in parallel, individual neural network circuits or optical subsystems can 
achieve processing rates between a billion and a trillion operations per second. Of course, these operations, 
because of their simplicity, do not generally accomplish what an operation on a digital computer does, and 
so these figures can be misleading. 

2.1.3    Processing Elements and Operations 

There are two types of processing elements in a neural network. By analogy with components in bi- 
ological networks, these are often called neurons and synapses. A synapse performs an operation on its 
single input. The operation is typically a multiplicative weighting; in some cases, it may be a difference 
calculation or other operation. A neuron receives inputs from many synapses, combines them in some 
way, and then performs a generally nonlinear operation on the result. 

Linear summation naturally lends itself to direct physical implementation. Currents directed into a 
conductor, charges transferred onto a capacitor, and optical photons directed onto a detector are all added 
without requiring explicit information processing. Very high accuracy is achieved with virtually no effort 
and in a very compact device structure. 

The Neural Network Study's Adaptive Knowledge Processing Panel (Panel 2) has found that models 
employing more sophisticated interactions between the individual synaptic signals to a neuron (such as 
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temporal coincidence) should be investigated because they may lead to significantly more powerful net- 
work models. If this turns out to be the case, new thinking on the part of implementors will be required 
to determine what kinds of processing besides addition can be performed efficiently. 

2.2   CONNECTIVITY CONSTRAINTS IN IMPLEMENTATION 

Biological neural networks are constructed in a three-dimensional world from microscopic components 
that seem to be capable of nearly unrestricted interconnection. This is, alas, not true of man-made network 
implementations, either electronic or optical. 

2.2.1    Connectivity Within a Chip 

Single integrated circuits using present-day technology are planar objects with a limited number of 
layers available for interconnection. This places severe constraints on the types of neural network models 
that can be implemented efficiently in silicon. 

Figure 2-1 shows a two-dimensional array of neurons with near-neighbor-only connections. This net- 
work architecture is common for sensor preprocessing applications, especially in vision, where the neu- 
rons are the optical detectors and the interconnections allow preprocessing operations to be performed in 
the focal plane. Although the direct connections may be nearest-neighbor-only, longer range interaction 
between the neurons can occur as a result of multiple processing cycles. 

The nearest-neighbor structure makes very efficient use of silicon area. First of all, the total number 
of processing elements (neurons plus synapses) is a small integer multiple of the number of neurons and 
scales with the area of the chip. Secondly, no crossovers are required for the wires that connect the neurons 
to their synapses, and thus little chip real estate is wasted on crossover connections between conducting 
layers. 

As connections are required to more distant neighbors, the number of crossover connections grows 
extremely rapidly. Figure 2-2 shows the situation with only second nearest neighbors added, and it is 
already almost too complex to draw. If non-multiplexed interconnection lines are used, most of the chip 
area is soon consumed in wiring and crossovers, and a relatively small fraction of the area is devoted to 
useful information processing. If multiplexed lines are used, control becomes far more complex and fully 
parallel operation is lost. 

At the other extreme of full interconnection between all neurons in an input set and all neurons in an 
output set, an efficient use of silicon area can again be achieved. As shown in Figure 2-3, this has been 
achieved by changing to a different chip architecture, with the neurons arranged along the edges of the 
chip. Although the number of neurons now only scales as the linear dimension of the chip, the total 
number of processing elements is now dominated by the number of synapses, and their number scales as 
chip area. As with nearest-neighbor interconnection, essentially no crossovers are required. The axons 
(neuron outputs) and dendrites (neuron inputs) run as perpendicular bus lines in separate conductor layers 
in the circuit. One should note that the efficiency of the fully-connected network depends critically on 
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Figure 2-1. Nearest-neighbor Connectivity. This figure shows the topological constraints 
imposed by nearest-neighbor interconnection within a two-dimensional array of neurons. 
The upper part of the figure shows the connectivity for a single neuron, while the lower part 
of the figure shows the overlapping connectivity of a group of neurons. 
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Figure 2-2. Intermediate Connectivity. This figure shows the topological constraints im- 
posed when connectivity Is extended to second nearest neighbors. The upper part of the 
figure shows the connectivity for a single neuron to illustrate the number of wires required; 
the lower part of the figure shows the connectivity for a group of neurons to illustrate the 
large number of wire crossovers required. 
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linear addition being used to combine the individual synaptic outputs by depositing current or charge on 
a bus line. 
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Figure 2-3. Full Connectivity. This figure shows the topological constraints imposed by 
full interconnection between two linear arrays of neurons. The synapses are now packed 
densely in the area of the chip with very little interconnect wiring required. 

While intermediate levels of connectivity do not, in general, map well into integrated circuit implemen- 
tation, there are some special cases where efficient designs can be achieved. One of these is the case of 
N input neurons, each of which connects to its M nearest neighbors. A schematic layout for this case is 
shown in Figure 2-4. An efficient layout is possible here because of the uniform geometrical relationship 
in the connectivity pattern. 

2.2.2    Connectivity Between Chips 

Connectivity constraints within a single network on an integrated circuit have been discussed so far. In 
hierarchical networks, the outputs from one network must be transferred to the input of the next network. 
For subnetworks with linearly-arranged neurons, it might be possible on a wafer-scale integrated circuit 
to connect directly from one network to the next by placing the subnetworks adjacent to one another so 
that the outputs from one network line up with the inputs to the next. 

In other circumstances, such as when signals have to leave one chip and connect to another chip, a 
new set of problems arises. For very large numbers of neurons or when the neurons are distributed in 
two dimensions, it is impractical to bring separate leads for each neuron off a chip. First of all, it would 
be difficult to design a package with the required number of leads. Secondly, bringing signals off-chip 
through a package would require output driver amplifiers for each line, and this would consume a great 
deal of chip real estate and power. 
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Figure 2-4. Special-ordered Connectivity. This figure shows how a network with a partic- 
ular form of sparse interconnection can be implemented efficiently by taking advantage of 
the linear topology of the connectivity. In general, however, sparse connectivity can not be 
implemented efficiently in fully parallel form in a planar device. 

Massively parallel chip interconnection will be required to solve this problem. Three approaches can 
be considered: 

• Bump bonding, 

• Three-dimensional integrated circuits, and 

• Optical interconnection. 

Bump bonding has been under development for use with infrared focal planes for coupling area-image- 
sensing chips to amplifier/readout chips. It could be adapted to the interconnection of neural network 
chips. 

Three-dimensional integrated circuits are circuits with more than one layer of active semiconductor 
and a means for connecting the layers. Functionally, it is equivalent to a sandwich of individual integrated 
circuits fabricated on very thin substrates (approximately 1 ^m thick) with vias to allow electrical con- 
nections between adjacent layers. Little work on circuits of this type is under way in the United States. 
The Japanese, on the other hand, have been pursuing it intensively, with projects at nearly all the ma- 
jor laboratories in the country. The stated objective of their work has been to integrate, as illustrated in 
Figure 2-5, the image sensing and the digital image processing that is normally performed by a computer 
after the image is read out. The applicability of three-dimensional integrated circuits to hierarchical neural 
networks is obvious. 
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Figure 2-5. Three-dimensional Integrated Circuits. This figure illustrates an integrated 
circuit with more than one active silicon layer. An application to con ventional computational 
image processing is shown in this Japanese work, but the applicability to hierarchical neural 
networks is obvious. 

A third approach is to use optics as a passive medium to interconnect electronic chips. The arrangement 
shown in Figure 2-6 is meant only to illustrate some technologies that could play a role in this kind of 
interconnection. The lower chip incorporates the integrated deformable mirror spatial light modulator 
(SLM) technology under development by Texas Instruments. Light from an external source (to minimize 
power dissipation on the chip) is focused onto the microscopic mirrors by a precision array of microlenses, 
fabricated using technology developed for DARPA by Lincoln Laboratory. The reflected light beams 
are focused by another microlens array onto a second chip, where detectors convert the signal back into 
electronic form. 

2.2.3    Connectivity in Optical Neural Networks 

There are two generic approaches to using optics to support the connectivity of a neural network. One 
is to store synaptic weights in a planar transmissive (or reflective) device, such as a spatial light modulator 
(SLM), and to use lenses and fixed holograms to provide interconnection topology. The maximum number 
of independent synapses which can be provided is N2, where N is the linear dimension of the SLM array 
divided by the optical wavelength. Thus N neurons can be fully interconnected with N neurons. The 
shortcoming of this approach is that this connectivity is no greater than that which can already be imple- 
mented within an electronic chip. However, the optics can provide long-distance interconnects without 
capacitive and inductive crosstalk and loading. It can be used to supplement nearest-neighbor electronic 
interconnects on a chip of opto-electronic neurons. Also, many neural network problems do not require 
full connectivity between planes of N2 neurons. Many feature extraction tasks performed by the early 
visual system, for example, rely on intermediate or even nearest-neighbor connectivity. 

Lenses and planar holograms impose another constraint. The interconnect pattern they provide is space- 
invariant. If a planar hologram connects a neuron to three neurons, it connects another neuron in a shifted 
position to three neurons in correspondingly shifted positions with the same relative connection weights. 
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Figure 2-6. Optical Interconnection Between Chips. Light can be used passively (non- 
computationally) to provide massively parallel interconnection between two integrated cir- 
cuits. This figure shows an arrangement for illustrative purposes. 

For certain neural network problems, however, this type of constraint may be exactly what is required. 
Again, an example would be a feature extraction task of early vision, such as searching the visual field for 
horizontal lines. 

The second generic approach is to use volume holograms stored in photorefractive crystals. This ap- 
proach appears to offer connectivity between two area arrays of N x N = N2 neurons for a total con- 
nectivity of TV4. However, the number of independent connections (i.e., gratings) that can be stored in an 
ideal medium is limited by diffraction to TV3 (i.e., the volume of the hologram divided by the cube of the 
wavelength). In actuality, each of these TV*3 gratings provides roughly N connections of identical weight 
lying on the surface of a cone (the so-called Bragg cone degeneracy). This gives the appearance of N4 

connections, but only one connection from each grating is useful. Nevertheless, this approach does in 
principle provide richer connectivity: Af3/2 neurons can be fully interconnected with TV3/2 neurons. Fur- 
thermore, a volume hologram provides for space-variant interconnects. Because of the Bragg conditions, 
each angle of incidence can be made to address a separate pattern of connections. 

The above estimate of TV3 connections assumes gratings that span the entire range of solid angles. 
However, a practical optical system has a limited aperture, and the fraction of the N3 gratings that can 
actually be used is proportional to the square of the aperture (one factor for input and another for output). 
This penalty is in the 102 to 103 range. 

Furthermore, the photorefractive effect does not support idealized superposition of sequentially written 
gratings. Each stored grating is a spatial pattern of electric fields and ionized impurity concentrations 
which affects the exposure process associated with the writing of subsequent gratings. Conversely, the 
writing of each new grating fades the ones previously stored. The limits of photorefractive materials in this 

15 



respect have not been demonstrated. Indeed, it may be easy to write a hologram using a single exposure 
which associates one 200x200-element image with another and to claim that this represents over 109 

connections. In the context of neural networks, where learning and adaptation require multiple sequential 
exposures, such claims obscure the real issues. 

2.3    THE ANALOG-VERSUS-DIGITAL ISSUE 

In all areas of information processing, there have been debates as to whether analog processing or 
digital processing is the more advantageous approach. Traditionally, the digital approach has offered 
greater flexibility and arbitrarily high accuracy. The analog approach has offered speed, size, and power 
advantages in specialized applications. 

2.3.1 Advantages of Digital Processing 

In the case of data processing and general computation, the digital approach has nearly completely sup- 
planted earlier analog approaches. Several key factors have led to its acceptance in this domain. Perhaps 
the most important has been the speed, ease, and reliability with which digital circuits can be designed 
by inexperienced engineers with only average ability. The tremendous effort put into the development of 
digital design tools is only one factor that has made this possible. Even if comparable efforts were devoted 
to the development of analog design tools, analog design would still probably require a higher level of 
skill and experience, partly because the circuit interfaces are much less rigidly defined. 

A second factor that contributes to the popularity of digital circuits is the ease with which highly com- 
plex systems can be constructed from a relatively small set of moderately complex standard building 
blocks. This leads to high production volumes and decreasing cost. Digital circuits gained even greater 
popularity with the advent of programmable circuits, since they can perform an extremely wide variety of 
tasks under the control of software, which is far easier to redesign and reconfigure than is hardware. 

Still another factor is the accuracy with which computations can be performed. Perfect arithmetic 
accuracy is, after all, essential in financial calculations. In other applications, the perfect predictability 
of the results is an advantage. Analog circuits always have both random, time-dependent noise and fixed 
device deviations, and both of these contribute behavior which is essentially unknown. 

As digital circuits found wider and wider application, more and more resources were brought to bear 
on the development of the technology. As processing speed increased, tasks that only analog circuitry 
could previously handle, such as video signal processing, came within the realm of capability of digital 
processing. 

2.3.2 Advantages of Analog Processing 

Analog processing derives it main advantage when physical processes can be used to perform required 
computational functions. When this is done, extremely high-speed operation can be achieved with very 
simple devices. For example, natural propagation of electromagnetic or acoustic signals can be used to 
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provide time delays, and conservation of charge can be used to sum large numbers of currents or charge 
packets virtually instantaneously. 

As a result of these advantages, analog circuitry still reigns at the high end of the bandwidth and 
processing-throughput spectrum. Single charge-coupled device signal processing ICs can perform pro- 
grammable correlation operations on hundreds of signal samples at a sampling rate of 40 MHz; surface 
acoustic wave (SAW) devices carry out pulse compression on analog waveforms with bandwidths of hun- 
dreds of MHz; superconducting delay line circuits do the same for signals with bandwidths in the GHz 
range. Some of these tasks can be performed by digital circuitry, but the circuitry is far more complex, 
takes up much more space, and requires much more power; some of these tasks cannot be performed by 
digital circuits at all. 

Analog circuitry holds undisputed claim to one other area: the interfaces between digital systems and the 
real, analog world. Fast, very high-accuracy analog-to-digital and digital-to-analog converters are often 
the critical items that make the application of intermediate digital processing possible (for example, digital 
audio). Preprocessing and postprocessing of the real-world analog signals requires precision amplifiers 
and filters and waveshaping circuits. 

2.3.3    Analog versus Digital Neural Networks 

The same analog-versus-digital question has naturally arisen with neural networks. There was little 
likelihood that this question could be settled during the course of this Study; the answer will surely have 
to emerge from the results of research and the best efforts of both schools of thought. Here the Advanced 
Implementation Technology Panel (1) reports the opinions of the experts it interviewed and (2) summarizes 
some of the issues that affect the tradeoff between digital and analog implementations of neural networks. 

The general, though not unanimous, feeling in the neural network research community is that neural 
networks and analog circuitry (most likely in concert with digital circuitry) are naturally suited to each 
other. This is a feeling that is held even by a number of individuals, such as Carver Mead and Federico 
Faggin, with notable reputations in the area of digital design. The following discussion raises some of the 
issues involved in the analog-versus-digital question. In practice, more and more network implementations 
are using combinations of analog and digital processing to exploit the advantages of each. 

Encoding Efficiency 

One consideration is the amount of hardware needed to store a single synaptic weight. With analog 
operation, a weight can be stored in a single device or group of devices; with digital operation, a device 
or group of devices is required for each bit in the digital representation. 

On the other hand, the size of the device required to store an analog value may be larger than that of 
the devices required to store binary values. This is particularly true when absolute accuracy is required. 
In general, doubling the accuracy of an analog device requires doubling the size of the device, while the 
digital representation needs to add only one more bit. Thus the advantage that analog storage offers in 
number of devices can rapidly be lost as accuracy requirements increase. 
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Mitigating this effect is the possibility that neural networks will not need devices with high absolute 
accuracy. If networks are trained individually (as opposed to having a pre-computed set of weights down- 
loaded into them), then one is not so much concerned with accuracy in the devices as with the precision 
(the fineness with which levels can be set). A device might only have an accuracy of 20% but be ad- 
justable in increments of 0.1%. As design rules shrink, however, one will reach the point where the noise 
level becomes too high to support fine settability. At this point, analog devices may not be able to take 
advantage of scaling to smaller devices. On the other hand, the averaging process that takes place over the 
many synapses that contribute to the activity of a neuron may make the system less sensitive to random 
noise. These questions are still open issues for research. 

Processing Efficiency 

As noted earlier, analog processing that makes use of a physical phenomena to perform computations 
can offer tremendous advantages in processing speed and hardware complexity. 

Conservation of charge and Kirchoff's Law were cited earlier as very simple and fast ways to carry out 
the addition of a large number of signals in the form of current or charge. Other examples are: 

• Addition of signals in the form of light beams, 

• Natural relaxation of signals on resistor-capacitor networks or by carrier diffusion, 
and 

• Spreading of optical beams by imaging or diffraction. 

Another very significant area where physical phenomena can accomplish operations that are very time- 
consuming to perform symbolically is stochastic processing, as in Boltzmann machines. Here the natural 
noise in an optical or electronic device is amplified and used for the computation. 

Processing Speed 

Analog processing achieves a speed advantage only as a result of either more effective processing (as 
noted in the previous paragraph) or more parallel processing. At the level of a single operation, digital 
processing is faster because one has to wait only long enough to be sure that signals have crossed the logic 
threshold, whereas in analog processing one must wait several time constants so that the signal can settle 
to an accurate analog level. 

2.3.4   Behavior at the Limits of Integration 

Much of the progress in integrated circuit technology has been made by making circuit features smaller. 
In general, reducing line width by a factor of two allows packing four times as many circuits in a given 
area, and the resultant circuits each operate twice as fast as their larger counterpart. Power dissipation 
per unit area is unchanged, yet computational power has increased by a factor of eight. In addition to 
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performance improvements, scaling down size has cost benefits as well. Generally, if more functions can 
be printed into a given area of silicon, the cost per unit function is reduced. 

Of interest is whether there is a limit to the process of making features smaller. Photolithographic 
techniques do impose some practical limits, based on the wavelength of the light used. Methods now 
in development, such as electron beam and x-ray lithography, potentially offer much finer features than 
available with the optical methods used today. 

Assuming that very fine features can be practically printed, there are circuit limitations that must be 
considered. The scaling results cited above assume that dielectric thicknesses and doping depths are 
scaled along with doping density. Thus significantly different processing techniques may be needed to 
make smaller transistors. 

A fundamental limit on circuit size would appear to be associated with signal-to-noise ratios. As circuit 
size is reduced, it becomes necessary to reduce supply (and therefore signal) voltages to maintain limits 
on electric fields. At the same time, thermal noise effects become more important. 

For digital circuits to work reliably, the signal-to-noise ratio (SNR) must be in the order of at least 
20 dB. Below this level, the probability that a circuit will give erroneous output due to noise grows rapidly. 
Consider devices operating at a five-volt power supply and fabricated with a process technology offering a 
minimum feature size of 1 /itn and a gate oxide in the order of 400 AThermal noise in such a device leads 
to a signal-to-noise ratio of about 70 dB. The SNR depends on the third power of the scaling parameter, 
and thus the maximum possible reduction in dimensions would be approximately a factor of 50 (503 & 
100,000 = 50 dB). Under these assumptions, the ultimate circuit would operate with a 0.1 volt power 
supply and experience 0.01 volts of noise. 

If one were to attempt to use devices at this scale for analog circuits, no more than 10 statistically distinct 
analog levels could be expected from the device. This small number of levels might not permit adaptation 
because misadjustment during the adaptation process might be too great. Answering this question would 
require a careful theoretical analysis of the collective adaptive behavior of a large number of noisy devices. 
In general, one might expect that when large numbers of noisy signals are combined, the processing 
gain would counteract the effect of the noise in individual synapses. An error in one bit of a digital 
representation can lead to a very large error in the value, and processing gain would probably be much 
less effective in counteracting the error. This is still an open question. 

2.4   THE ROLE OF LEARNING 

With respect to learning, neural networks fall into a number of classes. Some networks, such as those 
that perform sensory preprocessing functions, are completely fixed. The design of the network determines 
the synaptic coupling coefficients. Examples are the retina and cochlea chips of Carver Mead's group at 
CalTech. 

Other networks have synaptic weights that depend on the problem that is being addressed by the net- 
work, but the weights are pre-programmed into the network. In electronic networks, this pre-programming 
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may be accomplished by one of the photomasks used during fabrication or by one-time programming us- 
ing laser, electron-beam, or fuse-link programming. Optical networks may be pre-programmed using 
photographic plates or holograms. These networks can only contain one set of weights. 

Other networks can be programmed more than once. Most networks of this type can be programmed 
continuously from an outside source of data. Many hybrid analog/digital networks fall into this class. 
Synaptic weights are maintained in a digital computer and loaded onto the chip or into a spatial light mod- 
ulator as needed to update the configuration of the network. Networks of this type can perform adaptive 
learning in response to changing environments. 

The final class of networks is capable of in situ learning. The learning algorithm is incorporated directly 
into the network, and no external computer is needed to perform the learning function. 

The members of the Advanced Implementation Technology Panel were in general agreement that the 
greatest potential of neural networks lies in learning and adaptivity. From an application point of view, 
this will allow networks to adapt based on experience and thus serve a broad range of applications. 

A second advantage afforded by adaptivity is the possibility to compensate for device deficiencies. In 
applications that involve or can be made to involve training of individual network components, the training 
process may act as feedback to compensate for variations in the characteristics of individual devices in 
the neural network. This would allow much smaller and less accurate devices to be used and would result 
in larger network implementations. 

2.5    THE ROLE OF OPTICS 

The principal advantage of using optics for the implementation of neural networks is the fact that one 
can optically implement a three-dimensional system with relative ease. The most common method for 
synthesizing a three-dimensional optical neural network is depicted in Figure 2-7. The active devices, 
or neurons, are arranged in planes. Each neuron communicates to other neurons optically via the third 
dimension. Each neuron receives its inputs in the form of optical signals incident at each location, and the 
state of each neuron modulates a light beam that is either locally-generated or illuminates the site of each 
neuron. 

One way to utilize the optical communication capability is in a hybrid implementation. In this case, each 
neural plane is essentially an electronic neural network chip which performs all the necessary nonlinear 
mappings and provides all the connectivity that can be accommodated on the chip with wires. Optics then 
provides vertical out-coupling of the information from the chip and allows chip-to-chip connections to 
avoid bottlenecks that would be created by pins on electronic packages. The optical connections could 
additionally be used to supplement the connectivity within a single chip. This approach is very attractive 
because it offers the best of both worlds: the flexibility of electronic design and the connectivity of optics. 

The most promising technology for implementation of such opto-electronic neural networks is based 
on gallium arsenide (GaAs) and other III-V semiconductors, alloys, and superlattices. With the advent of 
molecular beam epitaxy and organometallic vapor phase epitaxy, a great variety of electronic and electro- 
optical devices can be fabricated on a monolithic substrate. These devices include high-speed analog and 
digital circuits, fast spatial light modulators, detectors, LEDs, lasers, and waveguide devices. No other 
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Figure 2-7. Optical Neural Network. The basic architecture of an optical neural network, 
showing how the third spatial dimension is utilized to advantage to achieve a very high 
density of neurons and synapses. 

material system has this degree of versatility. While yield is still a thorny issue when fabricating large 
arrays, this technology is evolving rapidly because of the variety of applications that it supports. 

Finally, there is a variety of hybrid devices that could be used, such as gallium arsenide on silicon or 
PLZT electro-optic modulators on silicon. 

The arrangement shown in Figure 2-7 also allows the implementation of what might be called a fully- 
optical network, one in which all connections are made optically. Each neural plane can be fully populated 
(that is, to density TV3/2) with active devices (neurons), since there is no need to devote any of the real 
estate to the interconnections within the neural planes. Thus, the density of neurons per unit area on the 
active device, or "chip," that can be accommodated with this approach is higher. The light that originates 
from each position in a neural plane is redistributed to other neurons in the same or subsequent planes 
by holograms or other optical transparencies that are placed in the space between the neural planes. The 
information that is needed to specify the connections between the neurons can be recorded on either planar 
or volume optical storage media. 
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3.   SURVEY OF IMPLEMENTATION EFFORTS 

3.1    TAXONOMY OF NETWORK IMPLEMENTATIONS 

Before describing current research efforts in network implementation, a set of classifications that will 
help put these implementation approaches into perspective is presented. These classifications can be ap- 
plied either to the intrinsic characteristics of a technology or only to one particular application of that 
technology. 

3.1.1 Synaptic Weight Representation 

The synaptic (or interconnect) weights in a neural network can be classified by the range of values they 
can take on into the following classes: 

• Binary (only two possible values), 

• Discrete (a larger number of fixed values), or 

• Analog (a continuous range of values). 

The synapse circuits process input signals from external or internal sources, depending on stored "weight" 
values. The most common operation is multiplication, but differencing and other operations are possible. 
There are several possibilities for the range of weight values that can be represented. They may have 
binary values representing either of two possible paired memory states: (a) 0 (neutral) and 1 (excitatory) 
or (b) -1 (inhibitory) and +1 (excitatory). Another possibility is that the weights take on three values: -1 
(inhibitory), 0 (neutral), and +1 (excitatory). Other multiple, discrete values might be supported, or the 
weights might take on continuous analog values over some range. The synaptic weight representation 
may be binary even when the technology used in the synapse is fully analog, as in the case of resistors 
that are either present or absent rather than having adjustable values. 

3.1.2 Synaptic Programmability 

The programmability of the synaptic weights can be classified as follows: 

• Fixed, 

• One-time programmable, 

• Reprogrammable, or 

• Self-adaptive. 
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The synaptic weights may be fixed or programmable. If they are programmable, there are several 
degrees of programmability. They may be programmable only once, like a PROM, either at the mask 
level or after fabrication; or they may be reprogrammable, like an EPROM or EEPROM. If they are 
reprogrammable, the programming may be externally controlled or may be internally controlled, as in 
biological systems, in response to the network state (self-adaptive). 

3.1.3 Neural State Representation 

Like the synapses, the neuron (processing element) may have output states that fall into the following 
classes: 

• Binary, 

• Discrete, or 

• Continuous. 

Neural states also can be represented in various forms. They might take on binary values (0/1 or -1/+1), 
discrete values with more than two states (ternary -1/0/+1 or multi-bit digital), or continuous analog val- 
ues over some range. Two aspects of the circuit affect this representation. One is the kinds of input states 
that the synapses support. Some implementations, for example, use gated (on/off) synapses, which is ap- 
propriate for binary neural states. Other implementations use multiplicative inputs and can handle either 
multi-bit digital inputs or continuous analog inputs. The second circuit aspect that affects the represen- 
tation is the kind of nonlinear detection that is performed after the weighted summation. If a bistable 
(comparator) circuit is used, only binary neural states can be represented. 

3.1.4 Temporal Characteristics of Inputs 

The timing of inputs to the network can fall into the following two classes: 

• Sampled (inputs sampled at discrete times), or 

• Continuous (network responds continuously to inputs). 

External inputs to the network can be applied either continuously or in time-sampled fashion. Almost 
all implementations studied to date use discrete-time inputs. 

3.1.5 Temporal Evolution of the Network 

Regardless of the way external inputs are applied to the network, the neurons may respond in time in 
different ways. The following classes can be identified: 

• Synchronous, 
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• Discrete, 

• Asynchronous, or 

• Continuous. 

One major temporal characteristic of a network is whether it is synchronous or asynchronous. In a 
synchronous network, all neurons change state at the same discrete times in response to a global system 
clock. In asynchronous networks, each neuron responds to its inputs at its own pace. Asynchronous 
networks may be either continuous or discrete - that is, each neuron may either respond continuously in 
time or it may respond at discrete times on a self-clocked (non-global) basis. 

3.1.6 Imbedding of Network Model 

The neural network implementation can perform the network processing function in one of the two 
following ways: 

• Direct, or 

• Algorithmic. 

An integrated-circuit-based neural network may implement the equations of the mathematical model 
of a network, or it may implement an algorithmic reduction of that model. For example, the Carpenter- 
Grossberg adaptive resonance theory (ART) model for an associative memory classifier involves a com- 
plex set of coupled differential equations for the neural states and synaptic weights. It would be very 
difficult to implement this model directly with an electronic circuit. However, there are approximate 
separations of the equations that allow the model to be reduced to an algorithmic form that can be imple- 
mented in the form of a parallel network. On the other hand, Carver Mead's artificial retina is a direct 
implementation of the first three layers of neural cells in a biological retina. 

3.1.7 Technology Employed 

Neural networks can be implemented in various technologies that can be classified as follows: 

• Standard or special; or 

• Electronic, optical, opto-electronic, or other. 

The technology used to implement a neural network may be one of the standard IC technologies, such 
as digital or analog CMOS, or it may be a technology with some non-standard components. Examples of 
the latter are the Bell Laboratories resistor network, which requires special processing for the submicron 
resistors, and the Lincoln Laboratory MNOS/CCD-based network, which requires non-standard tunnel 
oxides for the analog MNOS storage elements. 

Most of the electronic implementations are based entirely on electronic circuits. It is possible, however, 
to use a hybrid approach in which optical input (or possibly optical output) is used. 
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3.1.8   Breadth of Applicability 

The breadth of applicability of a neural network implementation approach may be described as follows: 

• Limited, or 

• General. 

A final category is one that is hard to judge - but worth thinking about when evaluating an implementa- 
tion approach: whether the technology is limited or specifically-suited to only particular types of network 
models - such as Hopfield models - or whether it is capable of supporting a wide range of network models. 

3.2   SUMMARY OF IMPLEMENTATIONS 

Toward the end of the Study, researchers who have designed or developed advanced implementations of 
neural networks were invited to submit brief descriptions of their work. Many responded to the invitation; 
a few did not. Those descriptions that were received are included in full in Appendix A. In this section of 
the Report, those implementation efforts are summarized. The Panel notes, as an aside, that few of them 
have been well-funded; most have been pursued on an experimental basis at a very low level of support 
using internal discretionary funds. 

The data in Tables 3-1 to 3-5 at the end of this section summarize some the characteristics of these 
implementations. Figure 3-1 maps the performance domain in terms of total interconnects (synapses) 
implemented and maps the processing rate in interconnects-per-second. On the speed axis, both single 
electronic chips and single optical subsystems have capabilities in the same range of 109 to 1012 inter- 
connects per second. With advances in technology, both can do better — electronics slightly and optics 
perhaps substantially. 

On the other axis - total interconnects implemented or supported - the domains of optics and electronics 
are quite different. Dynamic RAMs, which are just reaching the 16 Mbit level, set an upper limit to 
the weight storage density. Since synapses are slightly-to-considerably more complex than a RAM cell, 
numbers in the 105 to 10 6 range seem reasonable for the upper limit to the number of interconnect weights 
that can be stored on a single chip. 

Optics, on the other hand, can make use of volume rather than area storage. A volume hologram 1 cm 
on a side contains more than 1012 cubes with a lateral dimension of X, the wavelength of light. This sets 
a theoretical storage density limit that is not likely to be even approached, but a value of 1010 is not out 
of the question. 
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Figure 3-1. Graphical Performance Summary. This graph shows the performance domains 
demonstrated or proposed for single integrated circuit chips and single optical subsystems in 
terms of the total number of interconnection weights stored and the number of connections 
performed per second. 
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LABORATORY ATT ATT ATT 
MODEL HAMMING FF HAMMING 
STATUS BUILT BUILT IN FAB 

CONNECTIVITY FULL FULL FULL 
PROGRAMMABILITY ONE TIME ELECTRICAL ELECTRICAL 
LEARNING NONE OFF CHIP OFF CHIP 
PARALLELISM FULL FULL PIPELINE 

CIRCUIT RESISTOR HYBRID A/D DIGITAL 
TECHNOLOGY SPECIAL CMOS CMOS 

INPUT TIMING SAMPLED SAMPLED SAMPLED 
NEURON TIMING CONTINUOUS CONTINUOUS SAMPLED 
SYNAPSE STATES BINARY BINARY BINARY 
NEURON STATES ANALOG ANALOG DIGITAL 

SIZE (NEURONS) 256/256 46/96 128/50 
SYNAPSES 66 K 4.4 K 50 
SPEED 1   MHz 10 MHz 100 MHz 
INTERCONNECTS 66 K 4.4 K 6.4 K 
INT/SEC 66 G 44 G 5 G 

Table 3-1. 

Characteristics of Chip Implementations of Neural Networks 

LABORATORY CALTECH CALTECH CALTECH JPL JPL 
MODEL RETINA COCHLEA FF FF FF 
STATUS BUILT BUILT PROPOSED BUILT BUILT 

CONNECTIVITY NN NN FULL FULL FULL 
PROGRAMMABILITY FIXED FIXED ELEC/OPTIC ELECTRICAL ELECTRICAL 
LEARNING NONE NONE OFF CHIP ONE TIME OFF/ON CHIP 
PARALLELISM FULL FULL SEMI FULL FULL 

CIRCUIT SUBTHRESH SUBTHRESH CCD RESISTOR RESISTOR 
TECHNOLOGY CMOS(MOSIS) CMOS(MOSIS) CCD CERMET/A-SI EL-CHEM 

INPUT TIMING CONT CONT SAMPLED SAMPLED SAMPLED 
NEURON TIMING CONT CONT SAMPLED CONT CONT 
SYNAPSE STATES ANALOG ANALOG ANALOG BINARY ANALOG 
NEURON STATES CONTG CONT BINARY ANALOG ANALOG 

SIZE (NEURONS) 48X48 256/256 40/40 
SYNAPSES 2300 66 K 1600 16 
SPEED 100 Hz 10 kHz 1-10 MHz 10 MHz 10 MHz 
INTERCONNECTS 2300 66 K 1600 
INT/SEC 230 K 1  G 16 G 

Table 3-2. 

Characteristics of Chip Implementations of Neural Networks 
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LABORATORY MIT/LL MIT/LL MIT/LL MIT/LL MIT/LL 
MODEL GAUSSIAN HOPFIELD HAMMING KOHONEN FF 
STATUS BUILT (PROP) BUILT BUILT BUILT PROPOSED 

CONNECTIVITY NN FULL FULL FULL FULL 
PROGRAMMABILITY FIXED ELECTRICAL ELECTRICAL ELECTRICAL ELECTRICAL 
LEARNING NONE ON CHIP OFF CHIP ON CHIP OFF CHIP 
PARALLELISM SEMI (FULL) FULL FULL SEMI SEMI 

CIRCUIT CCD CCD HYBRID A/D HYBRID A/D CCD 
TECHNOLOGY CCD MNOS/CCD WAFER CMOS(MOSIS) CCD 

INPUT TIMING SAMPLED SAMPLED SAMPLED SAMPLED SAMPLED 
NEURON TIMING SAMPLED SAMPLED SAMPLED SAMPLED SAMPLED 
SYNAPSE STATES ANALOG DIGITAL DISCRETE DISCRETE 
NEURON STATES ANALOG BINARY ANALOG ANALOG ANALOG 

SIZE (NEURONS) 288 X 384 13/13 32/16 40/40 1000/20 
SYNAPSES 110 K 169 128 1600 1000 
SPEED 1-10 MHz (10 MHz) 10 MHz 10 MHz 10 MHz 
INTERCONNECTS 450 K 169 128 1600 20 K 
INT/SEC 4 G (110 G) 1.7G(160G)1.3 G 16 G 10 G 

(1/0 = 0.4 G) 

Table 3-3. 

Characteristics of Chip Implementations of Neural Networks 

LABORATORY 
MODEL 
STATUS 

CONNECTIVITY 
PROGRAMMABILITY 
LEARNING 
PARALLELISM 

CIRCUIT 
TECHNOLOGY 

INPUT TIMING 
NEURON TIMING 
SYNAPSE STATES 
NEURON STATES 

SIZE (NEURONS) 
SYNAPSES 
SPEED 
INTERCONNECTS 
INT/SEC 

CHINA LAKE EDINBURGH 
BACK PROP FF 
IN DESIGN BUILT 

FULL FULL 
ELECTRICAL ELECTRICAL 
ON CHIP OFF CHIP 
FULL (FULL) 

ANALOG DIGITAL 
FLOATING GATE CMOS 

SAMPLED SAMPLED 
SYNCHRONOUS SYNCHRONOUS 
ANALOG DIGITAL 
ANALOG PULSE 

NRL 
FF 
IN FAB 

FULL 
ELECTRICAL 
OFF CHIP 
FULL 

ANALOG 
CMOS 

SAMPLED 
CONTINUOUS 
ANALOG 
ANALOG 

Table 3-4. 

Characteristics of Chip Implementations of Neural Networks 
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LABORATORY ROCKWELL UCLA UCLA 

MODEL RETINA RETINA BACK PROP 
STATUS IN DESIGN IN DESIGN IN DESIGN 

CONNECTIVITY 2ND NN NN FULL 
PROGRAMMABILITY NONE NONE ELECTRICAL 
LEARNING NONE NONE ON CHIP 
PARALLELISM FULL FULL FULL 

CIRCUIT ANALOG ANALOG COOLED CAP 
TECHNOLOGY CMOS CMOS CMOS 

INPUT TIMING SAMPLED SAMPLED SAMPLED 

NEURON TIMING CONTINUOUS CONTINUOUS SAMPLED 
SYNAPSE STATES ANALOG ANALOG ANALOG 
NEURON STATES ANALOG ANALOG ANALOG 

SIZE (NEURONS) 32X32 8X8 48/10 
SYNAPSES 12 K 480 
SPEED 100 kHz 
INTERCONNECTS 
INT/SEC 

Table 3-5. 

Characteristics of Chip Implementations of Neural Networks 
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4.   CONCLUSIONS CONCERNING ADVANCED IMPLEMENTATION 
TECHNOLOGY 

Digital electronic circuitry and precision analog electronic circuitry (such as that used for precision 
amplifiers and D/A and A/D converters) has been developed intensively over the past two decades. At the 
same time, there has been relatively little work on low-accuracy, high-density analog circuitry using very 
small electronic and optical devices. 

4.1 ADAPTIVE SYNAPSES 

Most of the implementation work to date on programmable networks has concentrated on those designed 
to be programmed by external sources. Little work has been done on networks that can perform their 
learning operations as an intrinsic function of the network. This capability will be increasingly important 
in two circumstances: 

• When large amounts of training data must be processed at high speed; and 

• When the circuit must adapt to its own imperfections. 

4.2 MASSIVELY PARALLEL CHIP INTERCONNECTION 

Quite a few experimental neural networks have been developed. Despite their small size in many cases, 
they achieve connection rates approaching 10 " interconnects per second. At this processing rate, in- 
put/output of data to and from the chip or optical system is often the limiting factor. Since it is widely 
recognized that few problems will be solved with a single neural network and that hierarchies of intercon- 
nected networks will be needed, massively parallel interconnections between networks will be required 
to take advantage of the processing power of the individual network subsystems. 

Indium bump bonding is one approach to this problem. It has been under development for several years 
now, principally for connecting non-silicon infrared detector arrays to silicon integrated circuit preampli- 
fiers and signal processors. 

Another technology that would be highly advantageous to neural networks would be so-called three- 
dimensional integrated circuits. These are circuits containing more than one active layer of silicon. Com- 
plex integrated circuitry can be fabricated in each layer, and the layers can be densely interconnected. This 
technology is being pursued vigorously in Japan but is receiving relatively little attention in the United 
States. Figure 2-5 in section 2.2.2 illustrates such a circuit. 

A third possibility is to use optics in a non-computing mode to provide dense interconnection between 
chips. Figure 2-6 in section 2.2.2 illustrates the concept. Massively parallel interchip connections have 
not been demonstrated using optics. 

31 



4.3    OPTICAL DEVICES 

Although optical neural networks offer great promise for applications requiring a very large number of 
neurons and systems with complex sparse connections, progress and performance in optics are hampered 
by poorly-developed devices and materials. 

Though the III-V semiconductors support the most mature and versatile technology, research is still 
needed to produce large uniform arrays of devices with reasonable yields. While this research is relatively 
expensive (involving such high-cost technologies as MBE), the payoffs are also high. 

Research on volume holograms in photorefractive materials should focus attention on the characteristics 
of the materials themselves. One issue is the storage capacity and readout characteristics when many 
patterns are sequentially stored (even the Kukhtarev model predicts non-idealities that are inherent to the 
photorefractive effect). A second issue is that in some applications, a fixing mechanism is needed in order 
to stabilize the stored patterns, and this is an area of active research. A third issue relates to materials 
preparation, that is, the problem of how to grow photorefractive crystals with optimal characteristics. 
Fe-doped LiNbO$ is the most well-developed and well-characterized material in this respect. 

In general, the realization of the benefits of optical and opto-electronic neural network implementations 
will require long-term funding of interdisciplinary research involving chemists, materials scientists, physi- 
cists, computer scientists, mathematicians, and engineers. Current funding realities in optical computing 
tend to reward short-term work on conceptual architectures based on idealized materials and devices. This 
sort of work pays too little heed to the impact of the non-ideal behavior of real materials and devices. Such 
non-idealities must be incorporated into the "error analysis" used to evaluate the performance of compet- 
ing neural architectures and algorithms. Indeed, this type of analysis is intrinsic to the design of optical 
and opto-electronic neural architectures; it is not merely an engineering detail to be postponed until a 
separate "implementation phase." 

4.4    IMPLEMENTATION-ORIENTED THEORY 

As noted elsewhere in this Report, almost all research on neural network models has concentrated on 
the performance of networks that exactly obey the equations defined for that model. In real networks there 
will be variations from component to component. Not all neurons will have the same nonlinear transfer 
relationship; gains and thresholds will vary. Not all synapses will perform their weighting operation or 
respond to learning signals in exactly the same way. Weighting functions will have nonlinearities, and the 
programming response gain will vary from synapse to synapse. 

It is very important that neural network theory begin to address these factors. Robustness in the face 
of defects and imperfections is almost universally cited as a characteristic of neural networks, but almost 
no effort has been devoted to substantiating the claim. It will not be surprising if some models are found 
to offer little robustness, while others perform well in the face of certain types of imperfections. Unfortu- 
nately, as the Neural Network Study's Simulation/Emulation Tools and Techniques Panel has discovered, 
very few neural network simulation tools have the capability to simulate these aspects of networks. 
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If a network is to take advantage of the extremely high performance capabilities of dense network 
integrated circuits and optical systems, such robustness will be essential. In addition to trying to find 
models that account for the behavior and performance of biological systems, network theorists should also 
try to find models that will perform well even when implemented with noisy, low-accuracy components. 
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APPENDIX    A 

DESCRIPTIONS OF IMPLEMENTATION PROJECTS 

This appendix contains short descriptions of a number of neural network implementation projects. To- 
ward the end of the Study, the Advanced Implementation Technology Panel sent letters to the neural 
network implementors whose work had come to its attention, inviting them to contribute one-page de- 
scriptions of each distinct implementation they had developed. Many responded to this request; a few did 
not. Those contributions that were received, with only slight editing, make up this Appendix. 

A.l    ELECTRONIC IMPLEMENTATIONS 

A.l.l    AT&T High Density Interconnection Matrices 

A fabrication technology for high-density resistor matrices has been developed. The goal is to make 
resistors as small as possible with values high enough that a large number of neurons can be interconnected. 
Also, the technology must be VLSI-compatible in order to combine these matrices with macro-electronic 
circuits. 

The matrices built consist of two sets of electrodes at right angles to each other, separated by a dielectric 
layer. At some of the crosspoints, resistive connections are stacked vertically between the wires. In this 
way, a resistor occupies only the area of the crosspoint of two wires and requires no extra on the chip. 

The fabrication process for such a matrix proceeds as follows: First, tungsten wires forming the base 
electrodes are patterned. These wires are coated with a layer of polyamide (dielectric) and, at the places 
where a resistor will connect two crossing wires, holes are etched through the polyamide. Then, a layer of 
amorphous silicon is deposited and, on top of that, a layer of tungsten. As a final step, the top electrodes, 
which run at a right angle to the base electrodes, are patterned. 

Matrices with 22 x 22 connections and widths of the tungsten wires of 2 fim have been fabricated. 
The resistor values for these matrices are few hundred k£3, and their standard deviation across a chip is 
less than 3%. Such matrices have been integrated in an associative memory circuit built with discrete 
amplifiers. 

This type of resistive connection can be scaled down into the submicron range. With wires of 0.25 /jm 
pitch, 12x12 matrices were fabricated. In this way, four resistors can fit into one square micron. This 
corresponds to a density of 4 x 10 8 connections per cm2 and represents by far the highest connection 
density reported so far. 

Primary References: 

Hubbard, W. and D. Schwartz, J. Denker, H.P. Graf, R. Howard, L. Jackel, B. Straughn, and F. Tennant, 
"Electronic Neural Networks," in AIP Conference Proceedings 151: Neural Networks for Computing, J. 
Denker, ed., pp. 227-234, 1986. 
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Jackel, L.D. and R.E. Howard, H.P. Graf, and J.S. Denker, "Artificial Neural Networks for Computing,' 
J. Vac. Sci. Technology, B4, p. 61, 1986. 

A.1.2    AT&T Read-Only Network 

In order to try out the fabrication for the high-density matrices on a real VLSI chip, a CMOS (comple- 
mentary metal oxide semiconductor) test circuit was designed. It consists of a frame with 512 amplifiers 
plus the digital logic to load the data on and off the chip. The chip is fabricated in standard CMOS tech- 
nology with 2.5 ^m design rules. 

The fabrication of these chips is done in a silicon foundry, except for the connections between the 
amplifiers. The connections are application-specific and are added in a final fabrication step in AT&T's 
laboratory. The amplifiers can be interconnected to form fully-interconnected networks with feedback or 
any type of feedforward network. 

In one version, 256 of the amplifiers are connected to a matrix of aluminum and lantalum-silicide wires. 
These wires are placed in the silicon foundry and, at each crosspoint of two wires, space is provided where 
a resistor can be added. To customize the circuit, a film of amorphous silicon is evaporated onto the chip 
and the resistors are patterned with optical lithography or electron-beam lithography. So far, a few such 
chips have been finished and tested. The CMOS part of the circuit works properly - however, broken 
wires in the connection matrix prevented the full circuit from functioning. A revised version with a matrix 
connecting 192 amplifiers has recently been received from the silicon foundry. 

Experiments have also been started to add resistor matrices with resistors stacked vertically between 
the crossing wires (see the description in section A.1.1). With line widths around 1 /jm, all 512 amplifiers 
can be connected in this way. 

The resistors consist of undoped amorphous silicon and their values are typically around 1 Mii. This is 
the proper range for networks with a few hundred neurons. The reproducibility of the resistor values lies 
within a few percent across a chip. So far, all the fabricated resistors had the same geometry, resulting in 
one value for the resistance. But the geometry of the resistors can easily be changed to give the connection 
strengths analog depth. 

The circuit described represents a new approach to building large neural networks. By combining state- 
of-the-art CMOS technology with the high-density connection matrices described before, well over one 
thousand neurons can be packed on a single chip of a size less than 10x10 mm. 

Primary Reference: 

Graf, H.P. and L.D. Jackel, R.E. Howard, B. Straughn, J.S. Denker, W. Hubbard, D.M. Tennant, and D. 
Schwartz, "VLSI Implementation of a Neural Network Memory with Several Hundreds of Neurons," in 
AIP Conference Proceedings 151: Neural Networks for Computing, J. Denker, ed., pp. 182-187, 1986. 
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A.1.3    AT&T 54-Neuron Programmable Network 

This circuit consists of an array of 54 amplifiers fully interconnected through a matrix of programmable 
resistive interconnections. It is an experimental circuit designed to study the behavior of large analog 
networks. Its architecture is general enough that several different networks can be mapped into this circuit 
simply by programming the interconnections. 

Each amplifier consists of two simple inverters connected in series; they work as high-gain, saturating 
amplifiers. A connection can be excitatory (+1), inhibitory (-1) or open (0), and its state is determined by 
the value of a two-bit weight stored in RAM cells nearby. Learning is done off-chip and the connection 
strengths are programmed by loading in all the weight values. The outputs of the amplifiers do not feed 
current directly into the input lines through the resistive connections. Instead, they control switches which, 
together with switches controlled by the weights, enable the current flow through resistors. In this way, 
the load an amplifier has to drive is minimal - only the capacitive load of the output wire. All the currents 
flowing into an input line of an amplifier are summed up and the voltage of a line adjusts to a value that 
the total current is zero. If the voltage of an input is above the switching threshold of the amplifier, its 
output goes high; otherwise, it stays lows. This corresponds to an analog computation of the inner product 
between a weight vector and an input vector plus a thresholding of the result. Analog computation is used 
only within the connection matrix; all the other signals are digital. 

The chip has been fabricated in standard digital CMOS technology with 2.5 /jm design rules. It contains 
roughly 75,000 transistors in an area of 6.7 x 6.7 mm. 

This circuit has been tested extensively working as pattern classifier and associative memory. In ad- 
dition, it has also been used to parse sequences of vectors. As associative memory, it finds a best match 
among 10 vectors of 40 bits length in times between 50 ns and 60 ns. In pattern classification applications, 
it can store up to 54 vectors, each 54 bits long, and find close matches in less than 1 /is. The chip has been 
interfaced to a minicomputer and is used as a co-processor in character recognition experiments. 

A new feature of this design is the interconnection element, which eliminates the requirement that the 
amplifiers drive all the currents for the analog computation. Instead, there are local current sources at 
each interconnection element that drive the currents. The chip is the first VLSI network this big with 
programmable interconnections, and the first VLSI neural network to be integrated in an application. 

Primary References: 

Graf, H.P. and P. deVegvar, "A CMOS Implementation of a Neural Network Model," in Advanced 
Research in VLSI, Proceedings of the 1987 Stanford Conference, P. Losleben, ed., p. 351 -367, MIT Press, 
Cambridge, MA, 1987. 

Graf, H.P. and P. deVegvar, "A CMOS Associative Memory Chip Based on Neural Networks," Digest 
ISSCC, L. Winner, ed., pp. 304-305, 1987. 
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A.1.4   AT&T Pattern Matching Network 

This circuit searches a set of stored vectors for close matches to an input vector. It has been designed 
for pattern recognition applications and machine learning (e.g., clustering). The design is based on the 
experience gained with the 54-"neuron" chip. 

The architecture of the circuit corresponds to a one-layered network with 96 binary input units and 
46 output units. A matrix with 4,416 resistive elements connects the input units with the output units. 
Up to 46 vectors, each 96 bits long, can be stored in this matrix, where each vector occupies one row. 
The resistive connections are programmable with binary values and the weight value is stored in a static 
RAM cell near the connection. An input vector is compared in parallel with all the stored vectors, and 
the inner product between the input vector and all the stored vectors is computed. If a result exceeds a 
certain threshold, a flag connected to that vector turns on; otherwise, it remains off. The thresholds are 
programmable and can be set individually for each vector. 

Analog current summing is used to calculate the inner products. Analog signals are used only within the 
interconnection matrix, and outputs are digital signals. A shift register transports the input vector along 
one side of the connection matrix. In this way, a new input vector can be ready for a computation at each 
clock cycle when, for example, an image is scanned for features. 

The circuit is designed to go through a full computation cycle in less than 100 ns. This time includes 
resetting the network and preparing the input data for a run; the analog computation takes only around 
20 ns. When running at full speed, the circuit evaluates around 500 million inner products of 96-bit vectors 
per second. The performance of the circuit is actually limited by the time required to read out the results 
and not by the time needed for the analog computation. 

The chip has been fabricated in standard digital CMOS technology with 2.5 /jm design rules. It contains 
over 70,000 transistors in an area of 6.7 x 6.7 mm. It is now being tested and all modules have been 
determined to work properly. Three versions of this chip have been designed to try out two different input 
structures and two different versions of comparators. 

New in this design is the way the analog signal representing the result is sensed. By using a direct 
comparison of currents, it was possible to reduce the time needed for the sensing to around 10 ns and keep 
power consumption at moderate levels. The whole architecture of the circuit, which is optimized for the 
pattern matching operation, is also new. 

Primary Reference: 

Not published yet; designed by H.P. Graf. 

A.1.5    AT&T Programmable Analog Synapse Matrix 

Two chips which are generic test vehicles for studying VLSI adaptive learning have been submitted for 
fabrication. The chips are organized as analog matrix multiplies with voltage inputs and current outputs. 
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The analog lines are all brought off-chip, which makes it possible to combine several chips to form a larger 
network. 

The weights are stored as the voltage difference between a pair of accumulation-mode MOS capacitors. 
Charge is moved between the capacitors by clocking a pair of long transistors in series with three pass tran- 
sistors, mimicking a charge-coupled device (CCD). In the current conservative designs, at least six bits of 
analog depth are expected, limited by parasitic capacitances between the long transistors. A transconduc- 
tance amplifier is used as a two-quadrant multiplier. Since each synapse outputs a single-ended current, 
the outputs can be summed by a single wire. 

At each weight, a switching matrix controlled by a pair of RAM cells connects the charge injection 
transistors to the global control lines. The response to a global "reinforcement" signal can be either an 
increment, a decrement, or nothing - depending on the states of the RAM cells and the clocking of the 
global signals. By modifying the clocking sequence, a decay operation, in which selected weights are 
multiplied by a constant k (k < 1), can also be obtained. The decay operation effectively extends the 
dynamic range available for learning. 

A 1.25 /jm CMOS version of the chip has 1,104 connections organized as a 46x24 matrix. Since 
the weights are stored in the form of charge on capacitors, special attention has to be paid to leakage 
currents. Measurements on test structures at room temperature gave 1% leakage in about 300 s with a 
500 mm2 capacitor as used on the chip. At 77 K in liquid nitrogen, the leakage is undetectable. A 10 4 

increase in hold time from the -55 C drop obtainable from a thermo-electric cooler is estimated. The 
substantial area taken up by the capacitors and multipliers is easily used to isolate the access transistors 
from non-equilibrium processes associated with the digital circuitry. A similar but smaller chip is also 
being fabricated in 2.5 /jm CMOS. 

The concept described represents a new approach to storing analog weights in a small area with a 
standard CMOS technology. In learning processes, the weights are integrated in a feedback loop and 
they are updated frequently. Therefore, a "semi-permanent" storage method for the weights is adequate. 
Moreover, cooling a circuit a few tens of degrees represents a much more economical solution to the 
leakage problem than developing a new fabrication process. 

Primary Reference: 

Schwartz, D.B. and R.E. Howard, "A Programmable Analog Neural Network Chip," Digest IEEE Cus- 
tom Integrated Circuits Conference, to be published May, 1988. 

A.1.6    AT&T All-Digital Hamming Network 

This is a fully-pipelined bit-serial classifier that outputs a list of the five best matches to an input vector 
found from a list of features stored on the chip. The chip was designed to compare analog and digital 
implementations of neural network algorithms and is intended for use in pattern recognition applications, 
such as image processing and speech recognition. High throughout is achieved by dedicating a separate 
processor for every stored vector and having them run in parallel.  Unlike its analog counterparts, the 
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design enables chips to be connected together to extend the pipeline without loss of throughout whenever 
more stored vectors are required. 

The design contains 50 processors per chip, chained together along a one-bit-wide data pipeline, a 
one-bit-wide match pipeline, and 12 one-bit-wide control pipelines. All calculations are bit-serial. Each 
processor has next to it a 128-bit ring register containing a stored vector. The Hamming distance - i.e., total 
number of bits difference - between the input vector and a stored vector is summed in an accumulator. At 
the time a distance computation is completed, the match list for the input vector arrives at the comparator. 
It is an ordered list of the five lowest Hamming distances found in the pipeline so far, together with the 
associated tag strings. If the match found by the current processor is better than one of the matches in 
the list, the current distance and tag are inserted. After the last processor in the pipeline, the list contains 
the best five distances overall, together with the tags of the stored vectors that generated them. The data 
stream and the list stream are loaded into 16-bit-wide registers for output. 

The chip is designed to operate at an on-chip frequency of at least 100 MHz, and uses non-overlapping 
two-phase clocks. This high speed is possible because stage sizes have been kept to two gates or fewer and 
data paths are short. The chip will produce a list of the five best distances and tag strings every 1.3 ms with 
a latency of about 2.5 ms. A string of 1,000 chips containing 50,000 stored vectors will have a latency of 
only 2.5 ms. This chip will be fabricated in 1.25 ^m CMOS technology and will contain roughly 300,000 
transistors. It is presently in the final design stage. 

Primary Reference: 

Mackie, S. and J. S. Denker, "A Digital Implementation of a Best Match Classifier," Digest IEEE 
Custom Integrated Circuits Conference, to be published May, 1988. 

A. 1.7    Bellcore Stochastic Network 

Joshua Alspector, Robert B. Allen, Victor Hu, and Srinagesh Satyanarayana of Bellcore have designed a 
test chip that can use a variety of learning algorithms that operate on a recurrent, symmetrically connected, 
neuromorphic, Hopfield-style network that, like the Boltzmann machine, settles to a global minimum in 
its Liapunov function in the presence of noise. These networks learn by modifying synaptic connection 
strengths on the basis of correlations seen locally by each synapse. The correlational synapse, when 
combined with a stochastic decision rule using physical noise, and weight saturation and decay, can create 
networks that learn in a supervised, unsupervised, or reinforcement manner, thus providing a basis for 
unifying these diverse learning paradigms. 

The chip is currently in fabrication in 2 Lim CMOS. The components of the test chip are a noise amplifier, 
a neuron amplifier, and a 300-transistor adaptive synapse, each of which is separately testable. These 
components are also integrated into a six-neuron and 15-synapse network. The synapse occupies an area 
of about 400 x 600 /itn, and the neuron is about half that. 

It will be operated as a supervised learning chip where digital training signals are applied at the input and 
output neurons. An analog waveform for the simulated annealing cycle will also be applied. There are no 
reserved neurons for input, hidden units, or output. Initial connectivity and weights are set by shifting in 
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five bits of information through the weight-controlling flip-flops. The weights can also be shifted out after 
learning for examination. The network is potentially fully connected. The annealing cycle will allow about 
10,000 pattern presentations per second. This has a slow dependence on the number of neurons so that 
there is a speed-up of roughly 10,000 times the number of neurons squared over an equivalent simulation 
on a VAX 11/780. The speed-up is due to parallel analog computation for summing and multiplying 
weights and activations, and the use of physical processes for generating random noise. 

Primary References: 

Alspector, J. and R.B. Allen, "A Neuromorphic VLSI Learning System," in Advanced Research in VLSI: 
Proceedings of the 1987 Stanford Conference, R Losleben, ed., pp. 313-349, MIT Press, Cambridge, MA, 
1987. 

Alspector, J. and R.B. Allen, V Hu, and S. Satyanarayana, "Stochastic Learning Networks and their 
Electronic Implementation," to be published in Proceedings of the conference on Neural Information 
Processing Systems - Natural and Synthetic, D.Z. Anderson, ed., MIT Press, Cambridge, MA, 1987. 

A.1.8    CalTech Artificial Retinas 

The work of Carver Mead and his graduate students at the California Institute of Technology (CalTech) 
differs significantly from that of other neural network implementors in its goals and in the circuit tech- 
niques that it uses. It concentrates on the lowest level of neural processing: the preprocessing of sensory 
data, such as that in the retina. The architecture for this kind of processing involves fixed (non-adaptive) 
interconnections over very short range, typically nearest neighbors. 

Mead's work also differs in the degree to which it attempts to mimic biology. It attempts to go beyond 
biological inspiration and to achieve what Mead refers to as "synthetic biology," where learning about 
the engineering issues faced by biological systems is an explicit goal. Following this constraint, the work 
stresses extremely low power consumption and fully analog circuitry operating in continuous-time. 

The Mead silicon retina chips use conventional MOS transistor structures but unconventional circuit 
implementations. Light-sensitive parasitic bipolar transistors in the MOS structure provide a logarithmic 
light-intensity-to-current response, similar to that observed in biological vision, that achieves a constant 
contrast sensitivity over a very wide range of light intensities. The MOS transistors for the neural network 
operate in the rarely used subthreshold region, where gate voltages are low and drain currents extremely 
small. The side effect of large variance from device to device is viewed by Mead as a useful characteristic 
in so far as it forces the system design to deal with this issue and to achieve accurate system performance 
from components of low intrinsic accuracy. 

Mead and his students have fabricated a number of simple retina chips with photosensors, resistive 
nearest-neighbor interconnections, and lateral inhibition. The chips have demonstrated image acquisition, 
motion detection, local contrast enhancement, and automatic gain control. The largest of the chips has 
implemented 48 x 48 photosensors in a hexagonal array. 
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In terms of the implementation taxonomy presented earlier, this approach offers synapses with fixed 
weights and continuous values, neurons with continuous values that evolve continuously in time, and 
external inputs that are applied continuously in time. The chip represents a direct embodiment of a neural 
network model of a retina. The technology is conventional CMOS as available through MOSIS, but the 
circuit design (operating conditions of the devices) is non-standard. 

Primary Reference: 

Sivilotti, M.A. and M.A. Mahowald and C.A. Mead, "Real Time Visual Computations Using Analog 
CMOS Processing Arrays," in Advanced Research in VLSI, Proceedings of the 1987 Stanford Conference, 
P. Losleben, ed., MIT Press, Cambridge, MA, 1987. 

A.1.9    CalTech Optical-input Synapse Networks 

Aharon Agranat, Charles Neugebauer, and Amnon Yariv at CalTech are building prototype neural net- 
works based on a new generic architecture which they proposed. 

The underlying principle is to store the synaptic interaction matrix in an optical spatial light modulator 
and to image it in parallel onto a detector array which is the input of the processing chip. Thus parallel 
processing in silicon is enabled, while the interconnectivity problem is avoided. 

Three different versions are now being built: 

1. A semi-parallel synchronous neural network with binary neurons based on CCD 
technology. The details of this version are given in the reference. The state of the 
art of CCD technology enables the building of 1,000-dimensional neural networks 
with complete update in 0.1-1.0 ms. A first chip with the various building blocks 
(integrators, etc.) required for this architecture has been fabricated and tested, and 
a second-generation chip is now being designed. 

2. A parallel synchronous neural network with either analog or binary neurons using 
CID (charge injection device) technology. A first chip with the building blocks for 
this version has been designed and fabricated and is now being tested. 

3. A parallel asynchronous neural network with binary or analog neurons, in which the 
synaptic interaction strength is transformed into light intensity which is continuously 
transformed into current at the detector array. A first chip of this version, with 32 
neurons, is now being tested. 

In conclusion, it should be pointed out that this approach includes two main advantages: 

• It can be realized immediately with present-day silicon technology, and 

• The information is loaded optically into the chip and, once loaded, can be operated 
upon or modified optically, thus opening the way to learning. 
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Primary Reference: 

Agranat, A. and A. Yariv, "A New Architecture for a Microelectronic Implementation of Neural Net- 
work Models," in the Proceedings of the IEEE First Annual International Conference on Neural Networks, 
San Diego, June, 1987. 

A.1.10   JPL Discrete Component Network 

Researchers at the Jet Propulsion Laboratory (JPL) have developed an electronic programmable neuro- 
computer based on off-the-shelf discrete components and a semi-parallel analog-digital hybrid architecture 
which can significantly reduce the hardware complexity of an electronic neural network. The hybrid ar- 
chitecture utilizes high-density digital memories to store the large quantity of information in a synaptic 
network and exploits the high-speed capability of neurons in analog hardware for parallel information 
processing. The present prototype hybrid neurocomputer, with 32 neurons, features 1,024 programmable 
synapses with three levels of synaptic connection strength. Additional memories are currently being in- 
corporated to increase the number of gray levels. 

The system is distinguished by its configurability; it can simulate a neural network with either a feedback 
or feedforward architecture, in a continuous-or discrete-time mode. The system operation can also be sus- 
pended momentarily at the end of each iteration cycle to study the dynamic evolution of the network into 
a stable state. Since the complete physical interconnections between neurons are no longer required, the 
hybrid neurocomputer can easily be expanded in size to realistically simulate large neural networks. The 
prototype hybrid neurocomputer has demonstrated a many-fold speed improvement relative to software- 
based simulations of neural networks. For a 1,000-neuron system, this architecture promises a processing 
speed of over 100 million interconnects per second. 

The analog-digital hybrid neurocomputer consists of three basic components: digital memory for the 
synaptic data, an array of binary-weighted resistors or multiplying digital-to-analog converters for quan- 
tized gray-scale synapses, and an array of threshold amplifiers (neurons) with input and output sample- 
and-hold units. During system operation in a feedback configuration, a neuron input is updated with a 
weighted sum of the present voltage outputs of the neurons. The synaptic data from the memory set the 
resistance values of the synaptic array to provide the appropriate weights for the selected neuron. The 
neuron inputs are updated sequentially to complete a single iteration cycle. 

Primary Reference: 

Moopenn, A., et al., "A Neurocomputer Based on an Analog-Digital Hybrid Architecture," in Proceed- 
ings of the IEEE International Conference on Neural Networks, M. Caudill and C. Butler, eds., Vol. 3, p. 
479, 1987. 
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A.l.ll    JPL Cascadable VLSI Synaptic Chip 

A programmable binary synaptic chip as a basic building block for electronic neural networks has been 
designed and fabricated at JPL. The chip, implemented in 3-/i bulk CMOS technology, features complete 
programmability of the 32x32 resistive binary connections (synapses) in a feedback or feedforward ar- 
chitecture. For maximum versatility, flexibility, and expandability, the processing units (neurons) have 
been kept off-chip. 

The unique feature of this chip is its cascadability and the use of long-channel MOSFETs (metallic 
oxide semiconductor field-effect transistors) for uniform, high-resistance synapses. It can be cascaded not 
only to form larger binary synaptic arrays with sizes and shapes of the user's choice, but it can also be 
"stacked" in parallel to form quantized gray synapses. As a research tool, a neural network system-based 
on these chips offers a significant speed advantage over software-based simulations, particularly in the 
feedback configuration. The convergence time of a chip-based feedback network (Hopfield model) is on 
the order of a microsecond. 

The matrix chip contains a 32 x 32 array of synaptic cells with long-channel MOSFETs, each functioning 
as a two-state (ON/OFF) resistive connection. The long-channel MOSFET-based "resistors" provide the 
weak ON connection resistance (~300 KCl) for low static power consumption, and the precision (±3%) 
necessary for proper threshold operation of the neurons. Programming or updating of the synapses is 
accomplished by either a shift-register memory in one design or addressable latches in another design. In 
an alternative approach, thin-film (germanium-copper alloy) resistors have been deposited in series with 
the FET switches in an additional special processing step to the normal CMOS fabrication run to obtain 
the desired uniform high-valued connection resistance. This approach provides linear and bidirectional 
resistive synapses, in contrast to the transistor-based "resistive" synapse. 

Primary References: 

Thakoor, A.P., et al., "Electronic Hardware Implementations of Neural Networks," Applied Optics, Vol. 
26, No. 23, p. 5085, 1987. 

Moopenn, A., et al., "Programmable Synaptic Chip for Electronic Neural Networks," to be published 
in Proceedings of the IEEE conference Neural Information Processing System - Natural and Synthetic, 
MIT Press, Cambridge, MA, 1987. 

A.1.12    JPL One-time Programmable Synaptic Arrays 

Electrically programmable, write-once, non-volatile thin film (40x40) prototype synaptic arrays based 
on memory switching in hydrogenated amorphous silicon have been demonstrated for the first time by 
JPL. At each node of the matrix is a normally-OFF microswitch of hydrogenated amorphous silicon in 
series with a current-limiting resistor. Resistivity-tailored cermets, or amorphous-germanium-metal-alloy 
thin films, provide the required high resistance (> 106ii) at a node in its ON state. By applying a short 
voltage pulse of sufficient amplitude, the microswitch is permanently switched ON and the resistance is 
essentially determined by the current-limiting resistor. Since a-Si : H requires only a very small amount 

44 



of switching energy (about one nanojoule per cubic-micron), it can easily be switched through a current 
limiting resistance of greater than one megohm. 

Hopfield's neural network model with feedback has been implemented using the thin-film-based, pro- 
grammable, non-volatile synaptic array and a set of discrete-component neurons (current-summing ampli- 
fiers followed by comparators). Although connecting several programmable binary synapses in parallel 
provides some quantized gray scale in such arrays, the true potential of such synapses is in its possible 
ultra-high density, since the size of a connection is essentially that of the thin film wire intersection. 

A feedforward, line-by-line-addressed, parallel-read-out, programmable (once), non-volatile high- den- 
sity memory with limited associative nature and fault tolerance (associative reflex memory, or ARM) with 
no moving parts has been proposed and is currently under development at JPL especially for space and 
defense applications. 

Primary References: 

Thakoor, A.P., etal., "Binary Synaptic Connections Based on Memory Switching in a-Si : H" in A1P 
Conference Proceedings 151: Neural Networks for Computing, J. Denker, ed., p. 426, 1986. 

Daud, T., et al., "Neural Network Based Feed-Forward High Density Associative Memory," IEEEI1EDM 
Technical Digest, p. 107, Washington, DC, Dec, 1987. 

Daud, T., et al., "Feed-forward, High Density, Programmable Read-Only Neural Network Based Mem- 
ory System," SPIE Proceedings of the O-EILASE '88 Symposium, Los Angeles, Jan., 1988. 

A.1.13    JPL Thin-film Solid-state "Memistor" 

The first solid-state, non-volatile, modifiable, analog memory resistor (memistor) has been developed 
by JPL. A gate-controlled, reversible injection of H+ ions in electrochromic thin film of WO^ modulates 
its resistance. An array of 16 such devices has been fabricated on a SiOi -covered silicon wafer and has 
been tested in the classic "Adaline" configuration. 

The true analog-resistive nature, excellent stability, cyclability, and extremely simple device structure 
are the distinguishing marks of this synaptic array. 

A hygroscopic thin film of Cri O3, separated from the active WOT, layer by a thin "blocking" SiO 
layer, acts as a source of H+ ions. Aluminum is used as the gate electrode and Ni provides the contact 
leads to WOi. The resistance of the device can be tailored and stabilized at any value over a wide dynamic 
range (~4 orders of magnitude). The programming speed is controlled by the selected gate voltage. 

Primary Reference: 

None yet. 
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A.1.14    MIT/LL CCD Gaussian Retina 

Jay Sage invented and, together with Analisa Lattes, demonstrated a retina chip that performs the 
computationally-intensive Gaussian convolutions on a detected image that are required for the difference- 
of-Gaussians (DOG) edge detection algorithm. Although originally conceived as a special-purpose imag- 
ing device, the characteristics of the chip are those of a neural network. 

The network was implemented using a standard four-phase charge-coupled device (CCD) frame-transfer 
imaging chip with a 384 x 288 array of pixels. Image detection was performed in the conventional way. 
However, before the image was clocked out of the chip, some special charge transfer operations that al- 
lowed neighboring pixels to interact were performed. 

Each photosensor on the chip can be regarded as a neuron that is coupled to its nearest neighbors in 
two dimensions. Thus the chip contained approximately 110,000 neurons. To conform to NTSC televi- 
sion standards, only 256 of the 288 lines were used for the experimental demonstration, resulting in just 
under 100,000 active neurons. The special CCD clocking operation established connection weights to the 
neighbors such that in each processing cycle the image represented by the activity pattern in the neurons 
was convolved with a small Gaussian kernel. The processing cycle could be repeated to achieve a wide 
range of Gaussian kernels. 

The area imaging chip used in the experimental demonstration could not actually perform parallel pro- 
cessing in two dimensions; instead the horizontal processing was performed sequentially on each line. 
Each step in the sequence involved 384 neurons operating at an interconnect rate of 7.2 MHz (twice 
the color subcarrier frequency), for a total of about 3 Gc/s (3 billion interconnects per second). A full 
two-dimensional implementation running at a connection rate of only 1 MHz would have achieved an 
interconnect rate of 100 Gc/s. In practice, this was higher speed than was needed. The semi-parallel im- 
plementation was already fast enough to allow all of the processing to be performed during the blanking 
intervals (retrace times) of the NTSC television signal. 

This implementation illustrates a neural network with fully-analog neurons operating synchronously 
with sampled inputs. The effectively binary synaptic weights were fixed by the structure of the net- 
work, with nearest-neighbor neurons interconnected (weight +1) and all other neurons not connected at 
all (weight 0). The chip represents an imbedding of a computational algorithm in a neural network cir- 
cuit. Standard CCD imager technology was employed. The implementation approach is limited to this 
particular problem. 

Primary Reference: 

Sage, J.P. and A.L. Lattes, "A High-speed Two-dimensional CCD Gaussian Image Convolver," MTT 
Lincoln Laboratory Solid State Research Quarterly Technical Report, August-October, 1986. 
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A.1.15    MIT/LL MNOS/CCD Learning Network 

Jay Sage, Karl Thompson, and Richard Withers of Lincoln Laboratory have built a prototype neural 
network based on MNOS (metal nitride oxide semiconductor) and CCD (charge-coupled device) tech- 
nologies. The chip implements a 13x13 fully connected coupling matrix built using 4-/im CCD design 
rules. Only the coupling matrix and its input/output drivers are on the chip. External differential amplifiers 
and sample-and-hold circuits were used to produce the neural output signals. 

Two novel features distinguish this design from other electronic applications built to date. First is the 
programmable analog representation of the stored coupling weights. Weights are stored as long-term 
charge in the nitride layer of the MNOS devices. In other designs, weights are either fixed binary values 
or quantized to a few bits of digital storage. 

Second is the summation of neural inputs by accumulation of charge on a conductor rather than by sum- 
ming of currents at a node. The network operates by a multi-phase clocked iteration cycle. The axonal 
signal on each row of the coupling matrix determines which of two sets of MOS capacitors gets charged, 
while the amount of charge in each packet is controlled by the coupling weights (in the form of stored 
charges in the nitride layer). After the charge packets are formed, they are clocked onto output diffusions 
and linearly sensed by on-chip amplifiers. There are separate summing diffusions and outputs for excita- 
tion and for inhibition. Off-chip comparators provide differential sensing and thresholding. Because of 
the gated charge transfer in this specific implementation of the technology, the neuronal states are limited 
to binary values. 

The chip is structured to implement the outer product associative memory algorithm. A vector to be 
stored is presented to the coupling network in both the row and column dimension, and the outer product 
is formed at the matrix points in the form of a fixed amount of charge wherever the outer product has a 1. 
This charge is then transferred into the nitride layer by a special, high-voltage bias signal. Experiments 
showed the ability not only to learn a vector in this way but also to learn independently and incrementally 
a second vector. This was the first neural network chip to perform its learning operations on the chip. 

In terms of the implementation taxonomy, this approach offers synapses with continuous analog values 
of the weighting coefficients. These weights are electrically reprogrammable and can even be incremen- 
tally programmed. Although only binary neurons were supported in this specific chip, continuous analog 
neural states could be supported. The operation of the chip is fully synchronous, in terms of both the 
presentation of external inputs and the internal processing. The technology is entirely electronic, using a 
special MNOS memory device and CCD operations. 

Primary Reference: 

Sage, J.R and K. Thompson and R. S. Withers, "An Artificial Neural Network Integrated Circuit Based 
on MNOS/CCD Technologies," AlP Conference Proceedings 151: Neural Networks for Computing, i. 
Denker,ed., 1986. 
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A.1.16    MIT/LL Wafer-scale Neuromorphic Architecture 

This work consists of a design for a wafer-scale neural network and the building and testing of a chip 
embodying the coupling components. The wafer design is based on a Lincoln Laboratory technology for 
making and cutting connections between conductors on a silicon wafer using laser pulses. The coupling 
elements on the wafer will be arranged in fully-connected blocks having a modest number of inputs and 
outputs (say, 32). Between the blocks will be groups of uncommitted conductors that run the length (on 
one metal level) or width (on the other metal level) of the wafer. The neural amplifiers at the output edge 
of each block could be wired, by laser linking and cutting of the conductors, to inputs on their own block 
or other blocks. In this way a generic wafer design could be customized by laser structuring into a variety 
of different wafers with different network topology. 

The coupling elements are CMOS multiplying digital-to-analog converters (MDACs). The test chip 
had 1,024 MDACs arranged to couple 32 inputs to 16 neural amplifiers (external to the chip). Each cou- 
pling site needed two MDACs - one for excitation and one for inhibition. The programmable, discrete 
synaptic weights for the coupling sites were stored in 4-bit-plus- sign digital registers configured as a 
static RAM. The MDAC operated by successive bits turning on or off 1-, 2-, 4-, or 8-unit currents through 
CMOS transistors. The size of a unit current was proportional to the input voltage to the MDAC (the 
output voltage of an amplifier representing the continuous state of some neuron). Therefore, the MDAC 
effectively multiplied the input voltage by the stored weight, with the product in the form of a current. 
These currents were summed (excitation and inhibition separately) by current-to-voltage transducer cir- 
cuits and then subtracted in a differential amplifier. Another test chip with a modified MDAC design and 
on-chip amplifiers, both based on current-mirror circuits, is being fabricated. The first chip was used on a 
circuit board to implement some neural networks, each made of a correlator in series with a max-picker. 
The circuits performed satisfactorily, and uniformity of MDAC properties to within a few percent was 
observed across the chip. 

In terms of the implementation taxonomy presented earlier, this approach offers synapses with multiple, 
discrete, reprogrammable values and neurons with continuous analog levels. External inputs are applied 
at discrete times, but internal neuronal processing takes place on a continuous (asynchronous) basis. The 
implementation is based on an all-electronic technology with conventional CMOS circuit elements inter- 
connected in a special, non-standard way. 

Primary Reference: 

Raffel, J. and J. Mann, R. Berger, A. Soares, and S. Gilbert, "A Generic Architecture for Wafer-scale 
Neuromorphic Systems," Proceedings of the IEEE First Annual International Conference on Neural Net- 
works, San Diego, CA, June, 1987. 

A.1.17    MIT/LL CCD Neural Network Processor 

A single-chip neural network processor that can be used to compute the matching score between two 
layers of neural nodes and to select and enhance the maximum has been proposed by Alice M. Chiang of 
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Lincoln Laboratory. The input layer consists of N analog nodes and the output layer has M analog nodes. 
Every input is connected to every output node via a programmable connection weight. For example, if 
the input layer contains 1,000 nodes and the output layer 20 nodes, the processor will provide 20,000 
programmable connections. At each of the output nodes, the weighted sum of the N inputs will pass 
through an on-chip, charge-domain, nonlinear sigmoid-type detection circuit. A decision can then be 
made on the selected output. 

The proposed processor consists of an ,/V-stage floating-gate tapped delay line for shifting and holding 
the N analog input values, N CCD multiplying digital-to-analog converters (MDACs), and an N x M- 
stage digital shift register (SR) for shifting and holding the digital connection weights. For design plas- 
ticity, the N inputs will be loaded and stored in R CCD analog shift registers, each R stages long, where 
R equals the square root of N. For each MDAC, there are M words stored in bit-parallel digital shift 
registers, providing sequential access to the M words. At each stage of delay, the floating gate is coupled 
to the analog input port of the corresponding MDAC, and the output from each MDAC is a charge packet 
proportional to the product of the analog input and the digital weight. All the MDACs on the same row 
share a common output port. The outputs from each row can be summed together in the charge domain 
and form a single output. In addition, a one-stage bucket-brigade device (BBD) is placed at the MDACs' 
common output port. The BBD is to be designed with non-ideal charge transfer efficiency. 

The CCD architecture for the two-layer neural network implementation is very plastic. For example, 
for a CCD network with 1,024 (32 2) input nodes and 20 output nodes, the processor will provide about 
20,000 programmable connections. With minor modification at the device output port, the processor 
can be reconfigured into a two-layer network with 32 input nodes and 640 (32x20) output nodes. The 
device is capable of performing 10 billion computations per second with a 10 MHz clock rate. This 
kind of performance clearly demonstrates the adaptability and the computational power offered by CCD 
technology. 

Primary References: 

Chiang, A.M., "A New CCD Parallel Processing Architecture," in VLSI Systems and Computations, H. 
T. Kung, ed., pp. 408-418, Computer Science Press, 1981. 

Chiang A.M. and B.E. Burke, "A High Speed CCD Digitally Programmable Transversal Filter," IEEE 
J. Solid-State Circuits, Vol. SC-18, p. 745, 1984. 

Chiang, A.M., "A CCD Parallel Pulse-Doppler Radar Processor," GOMAC Digest, pp. 505-509, 1986. 

Chiang, A.M. and PC. Bennett, B.B. Kosicki, R.W. Mountain, G.A. Lincoln, and J.H. Reinold, "A 100- 
ns CCD 16-Point Cosine Transform Processor," ISSCC-87 Tech. Digest, pp. 306-307, February 1987. 

Chiang, A.M., "CCD Retina and Neural Net Processor," Workshop on Hardware Implementation on 
Neuron Nets and Synapses, San Diego, CA, Jan., 1988. 
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A.1.18   MIT/LL CCD Retinas 

The integration of signal processors with photosensors makes it possible to perform simultaneous, par- 
allel computations on each pixel in real time. An interline-transfer area imager can be designed with 
integrated CCD signal-processing elements between neighboring pixels to simulate a solid state or a bi- 
ological system with locally-connected interactions between its neighboring cells. A 128x 128 Gaussian 
or a 64x64 Lorentzian retina is proposed by Alice M. Chiang of Lincoln Laboratory to perform such 
computations as time derivatives and minimization of the global spatial differences between neighboring 
pixels. The retina can be used for image restoration of a corrupted, noisy optical input, and also for motion 
detection. 

Exploiting the equivalence between images and statistical physical systems, Geman and Geman have 
developed a highly parallel image restoration algorithm. Void has extended this algorithm so that it can be 
implemented on a neural computing network. Each pixel (photodiode) on this retina would be connected 
to its nearest neighbors with the interconnection strength proportional to the gradient of a pair-interaction 
energy function h( x), where x is the difference between the intensities of the two neighboring pixels. The 
energy function can be chosen to correspond to the probability distribution function of any typical image. 
For example, the energy function can be chosen as a Gaussian function or a Lorentzian function. If such a 
retina is used as an imager, the state (intensity) of all pixels will evolve to a minimum energy or maximum 
probability state. Therefore, this retina can be used for image restoration from a corrupted noisy optical 
input. The interconnection strength between pixels will be implemented by using single-channel CCDs 
developed by A. M. Chiang. 

The read-out organization of the retina is based on an interline transfer CCD imager where the signal 
generated from each pixel is transferred to a vertical CCD linear shift register and all the vertical lines 
are clocked in parallel. This read-out scheme is chosen because it provides high quantum efficiency at 
the sensors, lower noise read-out than the conventional xy-scanner, and the possibility of integrating anti- 
blooming control at each sensor for large dynamic range applications. 

For motion-detection purposes, the retina will be designed to have two CCD shift register stages at 
each pixel site rather than one, so that two consecutive time samples can be taken at each pixel. The time 
difference between the two samples can be programmable and controllable by the CCD clock rate and can 
be as fast as 50-100 ns. The device would have a horizontal CCD shift register to read out the image line 
by line. At the output diffusion node, a correlated double sampler would take the difference between two 
time samples and perform the motion detection function on each pixel in real time as it is read out. 

The basic design concept can be extended to implement an on-center/off-surround, or an off-center/on- 
surround retina for edge detection. Next-nearest-neighbor or even higher-order interactions can be incor- 
porated on a chip to allow one to build retinas for image segmentation or feature detection. 

A.1.19    Rockwell Low-level Vision Networks 

Bimal Mathur, Taihi Wang, Tom C. Tsen, and Emory Walton of Rockwell are designing chips for real- 
time image understanding systems. 
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Since low-level vision processes operate on sparse data, involve noise operations, and may not produce 
a unique output for a given input image, these processes fall in the category of "ill-posed" problems. 
These problems can be converted to "well-posed" problems by including certain constraints. It has been 
proposed that these problems can be solved using resistive networks. In practice, these networks can be 
realized as Hopfield networks with linear neurons. However, these researchers' investigations point to the 
necessity of using nonlinear neurons. 

These researchers are in the process of designing chips which will perform edge detection, stereopsis, 
and estimation of the motion field. Each of these chips is visualized as a custom analog chip which will 
be flip-chip bonded (using indium columns) via a matrix of NxN connections to an I/O chip. The I/O 
chips will consist of suitable circuits to read/write analog voltages to the analog chip. In addition, the I/O 
chips may be used for programming weights and setting binary switches to perform data fusion. Since 
edge detection is believed to be the first process in low level vision, the researchers have started with this 
process. 

The edge-detection algorithm is implemented by selecting a suitable interconnection pattern and the 
steady-state response of the network is the desired solution. The interconnection pattern is translation- 
invariant and needs connections up to fourth neighbors. However, it has been shown by UCLA that a 
good approximation can be achieved by using empirically derived second-neighbor connections. A chip 
based on this approach is being designed by Joe White, Bruce Furman, Assad Abidi, and Rich Baker of 
UCLA in collaboration with Rockwell. This chip is based on analog circuits and will be fabricated in a 
MOSIS 3/i CMOS process. The array size will be 16 x 16. 

An analysis of the edge-detection algorithm which is implemented in the chip described above shows 
that the operation of the network is equivalent to a two-dimensional convolution of the image with a 
Gaussian function. The analog network uses active components to achieve this. 

An alternate architecture which depends on the transient response of a non-uniform RC plane is being 
developed at Rockwell. In this approach, the researchers are relying on generating a circularly symmetric 
point-spread-function by driving the RC plane for a length of time and then measuring voltage distributions 
after a suitable delay time. Each of these samples is a two-dimensional convolution of the image with the 
point spread function. The array size for this chip will be 32x32. 

It is visualized that several of the I/O chips will be integrated on a single wafer to solve the problem 
of inter-module communication. On different sites of this wafer, chips based on different technologies 
(designed to perform different tasks) will be bonded using indium-column technology. This technology is 
currently being used to manufacture 128x 128 HgCdTe-based infrared (IR) focal plane arrays which are 
mated to a CMOS I/O device. 

Primary Reference: 

1988 Custom Integrated Circuits Conference. 
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A.2   OPTICAL IMPLEMENTATIONS 

A.2.1    BDM/NRL Attentive Associative Memory Network 

Ravi Athale and Carl Friedlander of BDM and Harold Szu of Naval Research Labs (NRL) have devel- 
oped a prototype neural network based on off-the-shelf LED (light-emitting diode) and PIN photodiode 
components and electronic amplifiers. This prototype implements a novel associative memory model, 
called attentive associative memory, that stores and retrieves four 16-bit binary vectors. In this prototype, 
the attention (or the a priori expectation of stored states) is manually controlled using amplifier gain and/or 
off-set. 

Two features distinguish this prototype from the earlier opto-electronic auto-associative memory model 
demonstrated by Psaltis and Farhat. The first is the storage of vectors individually, as against the outer 
product rule. This makes the inner product values of the stored vectors with the input vector accessible. 
A non-uniformly nonlinear operation on these values allows suppression of crosstalk and incorporation 
of a priori expectation. 

The second feature is a lensless design, which in its fully developed form will involve a two-dimensional 
spatial light modulator with elongated fingers. This allows for a compact system that is light-efficient and 
permanently aligned. 

The prototype consists of two opto-electronic planes, each containing a two-dimensional array of LEDs 
and photodiodes. The LEDs and the photodiodes along a column (row) are interconnected such that the 
output of the photodiode column (row) is proportional to the sum of light intensities on the individual 
elements; this output is nonlinearly amplified with electronic amplifiers and applied to the adjacent LED 
column (row). The light outputs of all the LEDs along that column (row) are identical. The two opto- 
electronic panels are assembled with a film mask sandwiched between them such that the LEDs in one 
panel illuminate the photodiodes in the other panel after being modified by the film mask. The data vectors 
are encoded along rows of the film mask. The LEDs in the first panel and photodiodes in the second panel 
calculate the inner products between the input vectors and the stored vectors in parallel. The LEDs in the 
second panel and the photodiodes in the first panel calculate a linear superposition of all the stored vectors, 
which is then input (after thresholding) to the inner product operation described before, thus completing 
one iteration. 

The attentive associative memory model, in essence, finds a state that is simultaneously consistent with 
the a priori knowledge constraints in the inner product domain and in the data domain, as well as the 
input values. The stored vectors are among the stable states, although for a distorted input, the stable state 
need not correspond to the stored vector with highest correlation, making this model distinct from other 
associative memory models. The ultimate implementation of this compact architecture will use electro- 
optic materials in the spatial light modulators with inherent nonlinear transfer function, obviating the need 
for electronic amplifiers. 

Primary Reference: 

Athale, R.A. and C.B. Friedlander and B.G. Kushner, Proceedings ofSPlE, Vol. 625, p. 179, 1986. 
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A.2.2    NRL Adaptive Realtime Holographic Network 

A group headed up by Arthur Fisher in the Optical Sciences Division of NRL has, since 1984, been 
developing optical implementations of artificial neural networks with powerful adaptive learning capabili- 
ties. Other participants in this research have included: Wendy Lippincott and John Lee at NRL, Lee Giles 
of AFOSR, and Robert Fukuda of Sachs Freeman Associates. A variety of versatile adaptive learning 
optical architectures have been investigated and a few have been constructed and experimentally demon- 
strated. Realtime holographic implementations and five distinct optical architectures employing spatial 
light modulators (SLMs) have been investigated. The SLM-based architectures implement three types of 
learning dynamics: Widrow-Hoff (also known as LMS, or least mean square), Hebbian conjunction of 
activation (adaptive outer product), and conjunction of differences. The holographic architectures also 
have adaptive learning capabilities, but trade some aspects of performance for reduced implementational 
complexity. A variety of means have been proposed for tackling the "holographic adaptive encoding 
problem" (see primary reference, including hashing techniques, look-up table encoding holograms, and 
one-dimensional encoding). 

Both Widrow-Hoff and Hebbian SLM-based architectures have been built and successfully demon- 
strated. These experimental architectures are being operated with up to 10 vector elements and 100 
synapses. The current technology could conceivably support up to about 1,000 neurons and 10 6 synapses, 
with adaptation of all the synapses occurring in 1 ms (109 synapses/s) and all the recall operations (106 

multiplications and 106 additions) occurring in 10~9 s (10 I5 ops/s, limited only by light propagation 
speeds). 

These are, essentially, all-optical architectures, with both the learning and recall operations being ac- 
complished optically, without the aid of any adjunct electronic computations. In the optically-addressed 
SLM architectures, the requisite additions, subtractions, multiplications for inner and outer matrix prod- 
ucts, and actual updating and storage of the synaptic weight matrix are accomplished by the SLMs. All 
these architectures can also be operated in either a spatially-discrete matrix algebraic mode or with contin- 
uous resolution where the primitive operations become overlap integrals, convolutions, and correlations. 
Continuous resolution operation generally results in higher information capacities. 

This research is not an exercise in the optical implementation of algorithms, but has attempted to de- 
velop optical associative networks which offer the performance capabilities which will ultimately be re- 
quired by anticipated applications. Hence the emphasis on adaptive learning, characterized by such ad- 
vanced capabilities as (see primary ref.): incremental learning, gated learning, gradient-driven learning, 
multi-layer and temporal credit assignment, controlled forgetting with no arbitrary decay, non-saturating 
weights, error-correcting feedback, convergence to optimum pseudoinverse associations, and minimal a 
priori data constraints. These associative architectures can be configured to implement a variety of recall 
formulations, ranging from simple matrix-vector inner products to nonlinear, recursive dynamic models 
(e.g., Hopfield) or optical resonator recall configurations. The required nonlinear operations are imple- 
mented by SLMs. Most of these architectures are also optically cascadable modules, with all input and 
output information patterns in optical form. These cascadable modules have been designed to be opti- 
cally interconnected and cascaded to construct more sophisticated multi-layer artificial neural network 
architectures for solving particular problems. 
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Primary Reference: 

Fisher, A.D. and W. Lippincott and John N. Lee, "Optical Implementations of Associative Networks 
with Versatile Adaptive Learning Capabilities," Appl. Opt., 26, p. 5039, 1987. 

Related Publications: 

Fisher, A.D. and W. Lippincott, and John N. Lee, "Optical Implementations of Associative Networks 
with Versatile Adaptive Learning Capabilities," Appl. Opt., 26, p. 5039, 1987. 

Fisher, A.D., "On Applying Associative Networks: An Approach for Representation and Goal-directed 
Learning," Proceedings of the IEEE First Annual International Conference on Neural Networks, San 
Diego, CA, June, 1987. 

Fisher, A.D. and John N. Lee, "Optical Associative Processing Elements with Versatile Adaptive Learn- 
ing Capabilities," Technical Digest of the Second OSA Topical Meeting on Optical Computing, p. TuA-5, 
1987. 

Fisher, A.D. and R.C. Fukuda and J.N. Lee, "Implementations of Adaptive Associative Optical Com- 
puting Elements," Proceedings of the SPIE, Vol. 625, p. 196, 1986. 

Fisher, A.D. and C.L. Giles and J.N. Lee, "An Adaptive Associative Optical Computing Element," 
Technical Digest of the Topical Meeting on Optical Computing, p. WB4, 1985. 

Fisher, A.D. and C.L. Giles, "Optical Adaptive Associative Computing Architectures," Invited Paper, 
Digest of Papers, IEEE COMPCON '85, p. 342, 1985. 

Fisher, A.D. and C.L. Giles, and J.N. Lee, "Associative Processor Architectures for Optical Comput- 
ing," OSA Annual Meeting, Journal Opt. Soc. Am., A, 1, p. 1337, 1984. 

A.2.3    CalTech/JPL GaAs Optoelectronic Neural Chip 

J. Katz, J.H. Kim, and A. Nouhi of the Jet Propulsion Laboratory, CalTech, and D. Psaltis and S. Lin 
of CalTech are in the process of developing a prototype neural network based on a GaAs monolithic 
two-dimensional array of opto-electronic neurons operating in conjunction with a volume hologram. The 
opto-electronic integrated circuit (OEIC) under development will implement 100 neuron elements (in a 
lOx 10 array configuration), and both interconnects and input/output signals will be optical. 

The main novel feature of this effort is that it is the first opto-electronic implementation of neural net- 
works that is based on monolithic integrated opto-electronic circuits, rather on discrete devices. Since 
all the neuron elements on the OEIC are not connected electrically, and the interconnects are specified 
optically, the OEIC can be a basic building block for several types of neural networks. For example, the 
use of a reprogrammable hologram (e.g., based on semiconductor photorefractive crystals) can lead to 
adaptable networks. 

Each neuron element of the OEIC consists of a photodetector, a saturating amplified (to implement 
the thresholding function), and a light source. In the current OEIC under development, the light source 
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is a light-emitting diode (LED), and the saturating amplifier is a bipolar-transistor Darlington pair (the 
high current gain is required because of the lower efficiency of the LED). The front transistor is a pho- 
totransistor, so it also serves as the photodetector. This helps simplify the OEIC design and fabrication. 
A common electrical connection to all the bases of the transistors enables control of the threshold of the 
neuron elements. The current OEIC layout also enables testing of subgroups within the entire array. The 
next generation of the OEIC will incorporate vertically-emitting laser diodes instead of LEDs in order to 
increase the OEIC power efficiency. 

The status of this effort in early 1988: fabrication of several initial OEICs, which involves a six-mask 
process, has been accomplished, and testing and evaluation is starting. A process, based on reactive-ion- 
etching (RIE), is being developed for fabrication of etched mirrors for vertically-emitting lasers. 

Since this work has just started recently, no published reference in the open literature is yet available. 

A.2.4    Northrop All-optical Network 

Harold M. Stoll, Li-Shing Lee, and Michael Tackitt of the Northrop Research and Technology Center 
have built an all-optical, continuous-time recurrent neural network. The network is a ring resonator which 
contains a saturable, two-beam amplifier (barium titanate); two-volume holograms (iron-doped lithium 
niobate); and a linear, two-beam amplifier. The saturable amplifier permits, through the use of a spatially- 
patterned signal beam, the realization of a 23x23-neuron array; the two-volume holograms provide global 
network interconnectivity (279,841 interconnections); and the linear amplifier supplies sufficient cavity 
gain to permit resonant, convergent operation of the network. 

Novel features which distinguish this network from other all-optical architectures include fully-adaptive; 
bipolar, and (potentially) asymmetric interconnects; low-noise recall of stored attractors; and enhanced al- 
gorithmic flexibility. Adaptive, bipolar interconnects result from the use of coherent training techniques to 
store attractors as volume holograms within crystals of photorefractive lithium niobate. Low-noise recall 
results from operating the network in a super-radiant or above-threshold mode. Algorithmic flexibility is 
achieved through the use of a true network architecture (with nonlinear processing in neural state space) 
which permits the execution of a broad class of energy-minimizing neural network algorithms. 

The two-volume holograms are used to realize an inner-product-type neural connectivity with Hebbian 
learning. Fourier and state-space holograms of a given training set pattern are generated using a common, 
plane reference beam which is made coherent with respect to all other training pattern reference beams. As 
a result of their mutual coherence, training set patterns may therefore be used to structure an interconnect 
matrix which incorporates inhibition (negative matrix elements) as well as excitation (positive matrix 
elements). Moreover, through the use of a (nominal) 90- degree angle between reference and object beams, 
the network is capable of accommodating very large training pattern sets (1,000-10,000 members). 

Both simulations and laboratory demonstrations have been performed. Two-neuron simulations indicate 
that, despite considerable internal differences, the network behaves in much the same way as a continuous- 
time version of either Anderson's BSB model or Hopfield's spin-glass model. Laboratory demonstrations 
have included storage and low-noise (speckle-free) recall of one of two non-orthogonal stored images 
(M-60 tanks viewed from different angles). 
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Primary Reference: 

Lee, L-S. and H.M. Stoll and M. Tackitt, "A Continuous-time Optical Neural Network," (in preparation 
for submission to Optics Letters). 

A.2.5    Hughes Opto-electronic Resonator Network 

Both all-optical and hybrid optical/electronic nonlinear holographic associative memories (NHAMS) 
have been successfully demonstrated at Hughes Research Laboratories by Yuri Owechko, Gil Dunning, 
and Bernard Soffer. The NHAM consists of a hologram situated in an optical cavity which provides gain 
and feedback. The hologram defines the stable modes of the resonator. Multiple angularly-multiplexed 
optical reference beams are used to record a multiplicity of images in the hologram. When the hologram 
is subsequently addressed by a partial or distorted version of one of the stored images, the system settles 
into the stable state "closest" to the input image. The system thus performs as an error-correcting, fully 
parallel associative memory. 

Nonlinear phase conjugate mirrors are used in the all-optical NHAM to threshold, amplify, and back- 
propagate reference beams which are generated by the input image. Storage and discriminative associative 
recall of two high-resolution gray-scale images has been demonstrated in the all-optical NHAM. In the 
hybrid NHAM, feedback and nonlinear processing of the reference beams are provided by liquid crystal 
light valves (LCLVs), vidicon detectors, and a video image processor. The electronics allows interfacing 
to a host computer which can program the nonlinearities and associative pathways. Successful opera- 
tion of the hybrid NHAM was also recently demonstrated. The error-correction properties of the system 
were evident as the input image could be rotated over a range of 10° with no observable degradation in 
the associated output image. In these initial proof-of-principle experiments, the stored images contained 
approximately 105 pixels, or "neurons," with each of the input neurons connected to a reference-layer 
neuron. 

Such optical associative memories, with their full parallelism and large number of interconnects, are 
extendable to high-speed implementations of large multi-layer neural network models. Variations on the 
hybrid NHAM, including the use of photorefractive crystals as the holographic medium, will permit the 
realtime updating of interconnection weights, which is necessary for the implementation of neural network 
learning algorithms such as, for example, backpropagation networks or self-organizing feature maps. Both 
optics and electronics are used to best advantage in hybrid NHAM systems, in that neurons are intercon- 
nected optically for parallelism, but the nonlinear operations are performed electronically for programma- 
bility. Based on the sensitivity of photorefractive media and performance of current detectors, within 
several years a hybrid neural network NHAM should be capable of implementing neural network models 
containing several million neurons with up to 108 to 109 interconnects. 

Primary References: 

Owechko, Y., "Opto-electronic Resonator Neural Networks," Applied Optics, Vol. 26, p. 5104, De- 
cember 1, 1987. 

56 



Owechko, Y. and G.J. Dunning, E. Marom, and B.H. Soffer, "Holographic Memory with Nonlinearities 
in the Correlation Domain," Vol. 26, p. 1900, May 15, 1987. 

A.2.6    Rockwell/CalTech Holographic Networks 

John Hong of the Rockwell Science Center and Demetri Psaltis and Cheol Hoon Park of CalTech have 
developed optical implementations of associative memory networks which use quadratic or higher-order 
interconnections. To realize the required interconnections, the architectures use volume holograms, and, 
in one system, planar holograms are used to achieve shift-invariant operation. The holographic media 
are readily available (e.g., photorefractive crystals on LiNbOj, gelatin, thermoplastic holographic plate, 
etc.). The other components required for the threshold nonlinearity (e.g., liquid crystal light valve) are not 
readily available. A trainable system which uses a higher-order generalization of the perceptron algorithm 
has also been developed using an adaptable volume hologram (e.g., photorefractive crystals). 

In general, an associative memory maps a set of M N\ -bit vectors to a set of M Ni -bit output vectors in 
a one-to-one correspondence. The most familiar associative memories to date (e.g., the Hopfield memory) 
are based on a linear discriminant structure where each output bit results from a threshold decision made on 
a linear combination of the input bits. It is well known that the linear structure limits the capacity of such 
systems to less than N\. The capacity can be significantly increased by using higher-order polynomial 
expansions of the input. A particular output of a quadratic memory, for example, is computed based on a 
quadratic expansion of the input bit. The capacity of such higher-order networks is greater than the linear 
systems at the expense of requiring many more interconnections. 

The interconnection-intensive memories just described can be efficiently realized by holographic tech- 
niques. In one of the systems, a spatial light modulator is used to first produce every possible pair-wise 
product of the input bits. Thus, an N\ -bit one-dimensional input vector is transformed into an N\ x N\ -bit 
two-dimensional representation. A volume hologram which has N\ x N\ x N\ degrees of freedom is used 
to interconnect the light emanating from these points to the N\ output detectors. The unique feature of 
many of these optical systems is that the realization of the interconnections is not confined to the plane, as 
would be the case in electronic systems. The interconnections are implemented in a volume which offers 
more degrees of freedom in a more compact way. 

Another system has an output response that is invariant with respect to shifts of the input vector. Here, 
planar-Fourier-transform holograms are used in a multi-channel version of the classical Van der Lugt 
correlator. In that arrangement, the input vector is correlated simultaneously against all of the memory 
vectors, and a spatial light modulator, such as a liquid crystal light valve whose output amplitude is the 
square of its input, is placed at the correlation plane so that each cross correlation is squared. The complete 
correlations are then used to read out a second, identical hologram whose outputs are properly summed on 
an output detector array. Since the input-output relationship is basically a pointwise nonlinear composition 
of correlation and convolution operations, the overall response is shift-invariant. Moreover, it was shown 
that the nonlinear operation in the correlation domain is crucial to the operation of the system. The system 
is equivalent to a quadratic associative memory which has been set up to store every shifted version of 
its memory vectors. At present, the critical components for the implementation of the systems described 
thus far are being evaluated, and actual implementations are under way. 
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Psaltis, D. and J. Hong, "Shift-invariant Optical Associative Memories," Optical Engineering, 26(1), 
p. 10, Jan., 1987. 

A.2.7    University of Pennsylvania Optical Networks 

Nabil Farhat and graduate student Zon Yin Shae at the University of Pennsylvania have built a bimodal 
opto-electronic neural network that can be used in two distinct modes, depending on the noise level (tem- 
perature) of the network. At finite noise levels, the network is stochastic and can be used as a Boltzmann 
machine with extremely fast annealing time (about 30 times the neuron time constant). Fast annealing is 
achieved with a novel noisy thresholding scheme that utilizes optical noise (snow pattern on a television 
screen), and any annealing profile can be implemented. 

In this mode, the network is useful for stochastic learning and self-organization, and for the solution of 
combinatorial optimization problems. Connectivity weights, synaptic modifications, and learning are re- 
alized using a non-volatile magneto-optic spatial light modulator (MOSLM), but other non-volatile SLMs 
can be used. Having learned the entities presented to it in a supervised manner through a process of adap- 
tive synaptic weight modification, the network is "frozen" by reducing the noise level to a minimum. It 
then acts then as an associative memory of the entities learned. 

Distinctive features of the network include: 

• Stochastic learning with binary weights employing multiple time-scale annealing 
profiles and dead zone limiting at the neurons, which permits the use of binary 
SLMs. 

• Full programmability in the sense that the network can be partitioned with the aid of 
an external computer controller into any number of layers with any desired pattern of 
communication among neurons in different layers and within the same layer. The 
present prototype consists of 24 binary neurons with 48x48 fully programmable 
interconnections as limited by the available 48x48 MOSLM and its drive circuitry. 

• Potential for being compacted into a small module consisting of a non-volatile SLM 
sandwiched between a pair of nonlinear reflector arrays employing internal feedback 
and external ambient light illumination. Such chips are efficient (as they utilize 
available ambient light) and are clusterable to form large neural networks of 103- 
106 neurons by exploiting their inherent optical interconnectability. The lack of 
capacitive or other loading of optical interconnects means the time response of the 
entire cluster is that of the individual modules and suggests that massive neural 
networks might be feasible with this clustering approach. A neural network cluster 
of nine modules is presently in the prototyping stage. 
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